Coffee Science_v.16, 2021

URI permanente para esta coleção${dspace.url}/handle/123456789/12727

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Performance of cross laminated timber panels made of Pinus oocarpa and Coffea arabica waste
    (Editora UFLA, 2021) Furtini, Ana Carolina Corrêa; Santos, Carolina Aparecida dos; Garcia, Hudson Venâncio Silva; Brito, Flávia Maria Silva; Santos, Thalita Paula dos; Mendes, Lourival Marin; Guimarães Júnior, José Benedito
    The growth of the civil construction sector, made necessary to develop alternative products made of sustainable materials. Within this context came the cross laminated timber panels (CLT), which are formed by gluing veneer arranged at 90°, which provide high strength and great versatility, as constructive elements. This research aimed to evaluate the chemical properties of the particles of both materials and evaluate the performance of CLT panels made with Pinus oocarpa and waste wood from Coffea arabica. The panels were made with three orthogonal layers with veneer of pine and coffee wood, using the phenol-formaldehyde (PF) adhesive with a spread rate of 0.35kgm-² and the hydraulic press with a pressure of 1,2×107 N.m-2for 15 min. The physical, mechanical properties, acoustic and thermal performance of the panels were evaluated. There was a significant difference for water absorption in 2 and 24 hours. The panels produced only with coffee wood waste showed the lowest water absorption rates, corresponding to 10.2 and 33.3%, in 2 and 24 hours. In relation to the MOE, the panels made with varied veneer were statistically equivalent to each other and the panels made of pine blades showed a MOE corresponding to 3,33×107 N.m-2. The same trend was observed for MOR, since the average value obtained for pine panels, corresponding to 1,35x108 N.m-2 was significantly higher. Panels made of coffee veneer and pine veneer showed no delamination. With regard to acoustic and thermal evaluation, all panels met the minimum requirements indicated in the standards, with emphasis on coffee wood waste, associated or not with pine wood.
  • Imagem de Miniatura
    Item
    Origin of black-green defect in the artificial drying of immature coffees
    (Editora UFLA, 2021) Rios, Paula de Almeida; Andrade, Ednilton Tavares de; Cardoso, Danilo Barbosa
    The inequality of coffee maturation leads to a large portion of green berries in the harvest. Post-harvest management techniques seek to minimize defects during the drying process, such as black-green defects in harvested immature berries. The present study aimed to investigate the minimum occurrence of black-green defects in the drying of immature coffee berries subjected to different temperature conditions and relative humidity values. In addition to fitting mathematical models to the experimental data, the effective diffusion coefficient and the water reduction rate (WRR) were determined. Nine coffee crops (Coffea arabica L.) of the Topázio Amarelo variety were harvested manually and selectively during the green maturation stage, with an initial water content of 2.106 ± 0.05 kg.kg-1 (dry basis, d.b.). After drying, the coffee was subjected to a drying treatment in a fixed-layer dryer with combined dry bulb temperatures (Dbt) of 35, 40 and 45 °C and dew point temperatures (Dpt) of 2.6, 10.8 and 16.2 °C until a final water content of 0.124 ± 0.05 kg.kg-1 (db) was reached. After drying, black-green defects were quantified as percentages. In addition to the drying kinetics, the WRR and effective diffusivity were evaluated. The lowest percentage of black-green defects occurred at a temperature of 35 °C and a Dpt of 2.6 °C (11.00%), which is the most suitable treatment for drying natural green coffees. The highest percentage of defects occurred when a Dbt of 35 °C was combined with a Dpt of 16.2 °C (14.17%). This combination showed the lowest effective diffusion coefficient of 0.551 x 10-11 m2.s-1. The Midilli model had the best fit to the experimental data for all drying combinations. The lowest WRR was 0.063 kg.kg-1.h-1 and was observed when a Dbt of 35 °C was combined with a Dpt of 16.2 °C.
  • Imagem de Miniatura
    Item
    Physicochemical, microbiological, and sensory characterization of fermented coffee pulp beverages
    (Editora UFLA, 2021) Cruz, Claudia Milena Amorocho; Cortés, Yenifer Muñoz
    Coffee pulp is the first by-product generated from coffee processing, a contaminating residue due to its composition and production volume. So, this research presents the use of coffee pulp with honey and sugar cane juice to elaborate alcoholic beverage and infusion. The harvested coffee was washed, pulped; the pulp was distributed in 3 treatments, by duplicates, (T) coffee pulp and water, (M) coffee pulp, water and honey, (G) coffee pulp and sugar cane juice. Then, each treatment was brought to 85 °C for 15 minutes, warmed up and yeast was added to each container. Fermentation was carried out for 14 days at 15 °C. After the liquid was separated from the pulp, the liquid fraction was left to ferment another 14 days, it was clarified with bentonite, it was bottled and for 102 days mature, the degrees of alcohol was measured by simple distillation. The pulp was placed in an oven at 75 °C for 3 days, the chemical composition was analyzed by FTIR, it was packed in hermetic bags, the dry coffee pulp was used to prepare an infusion. For its use, a fermented drink and an infusion were elaborated, evaluating physicochemical, microbiological, and sensorial characteristics through three treatments. The fermented drinks presented values of alcohol degrees 7°- 6°. The treatment with honey obtained a greater acceptance followed by the treatment with sugar cane juice. The infusions were acceptable, differentiated by herbal notes, pleasant aromas, and sweet flavors. In the pulp, the following were characterized by FTIR chemical compounds and wavelengths that show their absorbencies; caffeine with ranges of 2920-2850 and 1620 cm-1, 3280 cm-1 H2O, 1740 cm-1 lipids, 1240 cm-1 chlorogenic acid, and 1015 cm-1 carbohydrates. Finally, the infusions with coffee pulp were accepted by the evaluators, especially those that went through the fermentation process with honey and sugar cane.