Revista Brasileira de Ciência do Solo
URI permanente para esta coleção${dspace.url}/handle/123456789/9883
Navegar
2 resultados
Resultados da Pesquisa
Item Mechanized and irrigated coffee cultivation promotes physical subsurface constraints in Oxisols(Sociedade Brasileira de Ciência do Solo, 2025-06-16) Escobar, Katherine Martinez; Silva, Laís Maria Rodrigues; Morais, Keise Duarte Bacelar de; Neves, Júlio César Lima; Oliveira, Teogenes Senna deSoils of the Cerrados (Brazilian Savanna) are deep, well-structured, and well-drained, with flat to gently undulating terrain that favors mechanization for coffee cultivation. However, these soils are susceptible to compaction. This study aimed to assess the effect of mechanization on the physical characteristics of an Oxisol under irrigated coffee cultivation in the Alto Paranaíba-Minas Gerais State. We selected eight areas with different cultivars and years of Arabica coffee plantation, sampling five positions: right soil under the tree crown (RSC), right tractor lines (RTL), interrows (IR), left tractor lines (LTL), and left soil under the tree crown (LSC) at layers of 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.30-0.40 m. We conducted principal component analysis (PCA) and analysis of variance, comparing means through Tukey’s test (p<0.05). The PCA selected three principal components (PC1, PC2, and PC3) composed of 12 physico-chemical properties from a total of 27 evaluated. Total porosity (TP), mean penetration resistance (PRmean), volumetric moisture (θ) at 100 kPa (θ 100 kPa) and 300 kPa (θ 300 kPa) tensions, particle density (PD), and granulometric fractions (clay, fine sand, and coarse sand) were among the most influential attributes. Total porosity and PRmean demonstrated the existence of compaction in the tractor wheel tracks, particularly in the 0.00-0.20 m layer. The 3.5-year-old plantation did not show significant variations in these properties. The θ 100 kPa and θ 300 kPa were higher in the compacted areas, indicating increased water retention but potentially limiting aeration. Clay content increased with depth, while sand fractions decreased, influencing the soil susceptibility to compaction. The vigor of coffee plants, as identified by satellite images (NDVI), could not be fully associated with the physical constraints of the subsurface, as even areas with low vigor did not consistently correlate with poor physical properties in laboratory analyses. These findings highlight the complex interplay between soil physical properties and coffee plant performance, emphasizing the need for comprehensive management strategies in mechanized coffee cultivation.Item Physiological and morphological responses of Arabica coffee cultivars to soil compaction(Sociedade Brasileira de Ciência do Solo, 2023-12-22) Ramos, Elísia Gomes; Barros, Vanessa Maria de Souza; Miranda, José Danizete Brás; Silva, Laís Maria Rodrigues; Neves, Júlio Cesar Lima; Meira, Renata Maria Strozi Alves; Oliveira, Teogenes Senna deCompaction caused by mechanization affects soil quality and, consequently, the development of crops. This study aimed to evaluate the effect of different degrees of soil compaction on the physiology, morphology, and anatomy of different coffee cultivars in a controlled environment. The experiment was carried out in a greenhouse, with randomized block design in a 5 × 5 factorial arrangement, with five coffee cultivars (Arara, Catuaí Amarelo IAC 62, Catuaí Vermelho 144, MGS Paraíso 2 and Mundo Novo IAC 379-19) and five degrees of compaction (68, 74, 80, 86 and 92 %), with four repetitions, totaling 100 experimental units. The following variables were evaluated in the aboveground biomass: plant height, number of leaves, diameter of the orthotropic branch, fresh mass of leaves and stem, leaf area, gas exchange, and chlorophyll a and b index; in the roots: length, surface area, volume, diameter of fine and coarse roots, fresh and dry mass of roots, as well as anatomical characteristics. Results showed that soil with degrees of compaction above 80 % negatively affected the variables evaluated. Catuaí Vermelho 144 presented the worst performance regardless of the degree of compaction, while Arara and MGS Paraíso 2 showed the best performance under the evaluated compaction degrees. Anatomical structure of the roots was modified with soil compaction, and no differences were observed among cultivars.