Scientia Agrícola

URI permanente para esta coleção${dspace.url}/handle/123456789/12094

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Coffee crops adaptation to climate change in agroforestry systems with rubber trees in southern Brazil
    (Escola Superior de Agricultura "Luiz de Queiroz", 2022-04-13) Zaro, Geovanna Cristina; Caramori, Paulo Henrique; Wrege, Marcos Silveira; Caldana, Nathan Felipe da Silva; Virgens Filho, Jorim Sousa das; Morais, Heverly; Yada Junior, George Mitsuo; Caramori, Daniel Campos
    Adaptation to climate change is a strategy for crops to cope with the scenario of rising temperatures worldwide. In the case of Coffea arabica L., the use of agroforestry systems (AFS) with woody species is a promising practice to reduce excessive heat during the day. This study aimed to 1) evaluate air temperature changes that occur in an AFS of coffee and double alleys of rubber trees (Hevea brasiliensis Müell. Arg.) and 2) carry out an analysis of future warming scenarios by comparing the cultivation of Arabic coffee in full sun and in an AFS of double alleys of rubber trees. The microclimatic variables were measured between two rows of coffee trees at 1.0 m of height from June 2016 to June 2018. The results indicate that the AFS with double alleys of rubber trees spaced 16 m apart had an average temperature reduction from 1.4 to 2.5 °C from 10h00 to 16h00. The study also simulated temperature increases of 1.7, 2.6, 3.1, and 4.8 °C from 2018 to 2099, according to scenarios predicted by the Intergovernmental Panel on Climate Change (IPCC), and the impact in coffee production in Paraná State, Brazil. Using the climatic generator PGECLIMA_R, simulations suggest a progressive reduction of traditional areas suitable for open-grown coffee in the state. Production conditions can be maintained through the AFS, since the systems attenuate mean temperatures by 1-2 °C. We conclude that the AFS of coffee and rubber trees contribute to coffee crop adaptations to a future warmer environment.
  • Imagem de Miniatura
    Item
    Numerical modeling of actual evapotranspiration of a coffee crop
    (Escola Superior de Agricultura "Luiz de Queiroz", 2011-07) Cesanelli, Andrés; Guarracino, Luis
    The evapotranspiration estimation has great importance to crop productivity and agricultural water management. In this study, evapotranspiration is analyzed in a coffee (Coffea arabica L.) crop located in Piracicaba, state of São Paulo (Brazil) using a numerical method based on the simulation of both water flow and crop activity in the unsaturated zone of the soil. Actual evapotranspiration is estimated from potential evapotranspiration using water stress functions, meteorological data, soil hydraulic parameters, crop coefficients and leaf area index values. Crop transpiration and soil evaporation are individually quantified improving the analysis of the evapotranspiration process. The numerical procedure can predict periods of crop water stress and becomes an attractive tool to analyze the effect of non-standard conditions on coffee crops and to design efficient irrigation schedules. Simulated evapotranspiration values are in good agreement with experimental values determined in the study site.
  • Imagem de Miniatura
    Item
    Stomatal behavior and components of the antioxidative system in coffee plants under water stress
    (Escola Superior de Agricultura "Luiz de Queiroz", 2011-01) Deuner, Sidnei; Alves, José Donizeti; Zanandrea, Ilisandra; Goulart, Patrícia de Fátima Pereira; Silveira, Neidiquele Maria; Henrique, Paôla de Castro; Mesquita, Alessandro Carlos
    Coffee (Coffea arabica) plants show a positive relationship between stomatal closure and formation and accumulation of H2O2. However, for coffee plants under water restriction such relationship has never been studied. The objective of the present study was evaluate the stomatal movement and the antioxidant capacity of coffee seedlings under different water regimes. Eight months old coffee seedlings of cv. Catuaí IAC 99 were submitted to field capacity, gradual and total suspension of irrigation during a period of 21 days. Evaluations of leaf water potential (Ψ w) were performed in the beginning of the morning, and stomatal resistance, transpiration rate and vapor pressure deficit were determined at 10 am and 5 pm. All biochemical and enzymatic determinations were performed in leaves collected at 5 pm. Evaluations and samplings were performed at three days intervals. There was no variation in Ψ w during the evaluated period for plants in field capacity. However, an expressive decrease of Ψ w following day 12, reaching values near -2.5 MPa at the end of the experiment was observed for plants submitted to gradual suspension of irrigation. For plants submitted to total suspension of irrigation, Ψ w decreases after the sixth day, reaching -2.5 MPa at day 15. The decay of Ψ w in plants submitted to gradual and total suspension of irrigation reflected in increased stomatal resistance and in a decreased transpiration rate leading to an increase in hydrogen peroxide formation and, on final stages, increase in lipid peroxidation. As a conclusion, an increase in the activity of antioxidant enzymes as well as in the levels of ascorbate and dehydroascorbate was observed, which act in the detoxification of free radicals formed as result of the water stress.