A cafeicultura representa uma das principais atividades agrícolas, com grande importância no Brasil e no mundo, sendo o estado de Minas Gerais o maior produtor de café do país. Estimar os dados básicos desta cultura corretamente é um desafio, uma vez que as informações obtidas são pouco detalhadas e o setor ainda é carente de dados precisos. As geotecnologias têm sido promissoras para suprir esta lacuna, avaliando de forma mais precisa a dinâmica da cafeicultura. Porém, o mapeamento dessas áreas ainda é uma tarefa difícil, uma vez que elas são muito complexas de serem mapeadas, apresentando uma alta confusão entre os alvos. Para suprir esta necessidade, este trabalho foi realizado com o objetivo geral de propor uma metodologia para o mapeamento da cafeicultura, por meio de variáveis multiespectrais e multitemporais. O estudo foi conduzido em duas áreas distintas do estado de Minas Gerais, uma na região sul e a outra na região centro-oeste. Primeiramente, foram realizadas classificações, utilizando imagens de alta resolução do satélite RapidEye, testando diferentes algoritmos de aprendizagem de máquina e a combinação de diferentes variáveis (espectrais, geométricas e texturais) no processo de classificação. Os resultados mostraram que o algoritmo Support Vector Machine obteve os melhores resultados nas classificações para todas as áreas, com acurácia global de 88,33%. As variáveis texturais, quando associadas às espectrais, melhoraram a acurácia da classificação, porém, não houve diferença significativa entre as classificações. Apesar de os resultados terem se mostrado com bons índices de acerto, ainda houve muita confusão entre as classes. Foi proposto um novo método de mapeamento, utilizando dados multitemporais como variáveis no processo de classificação. Os resultados mostraram que os índices de acerto utilizando as variáveis multitemporais, integrados a variáveis espectrais, apresentaram índices de acurácia global de 93,00% e diminuíram significativamente a confusão entre os alvos, tornando o processo de classificação mais preciso. A metodologia proposta neste estudo mostrou eficiência no mapeamento de áreas cafeeiras.
Coffee is one of the main agricultural activities, with great importance in Brazil and in the world, being the State of Minas the largest coffee producer in the country. Estimate the basic data from this culture correctly is a challenge, once obtaining such information have little detail and the sector is still missing accurate information. Geotechnologies has been promising to fill this gap, evaluating more correctly the dynamics of coffee. However, the mapping of these areas is still a difficult task, since these areas are too complex to map, presenting a high confusion among the targets. To meet this need, the goal this study was to propose a methodology for mapping of coffee, by multispectral and multi-temporal variables. The study was conducted in two distinct areas, which are located in the State of Minas Gerais, the first one in the South region and the second in the Midwest region of the State. Firstly, classifications was performed, using high-resolution satellite imagery RapidEye, testing different machine learning algorithms and the combination of different variables (spectral, geometrical and textural) in the classification process. The results showed that the Suport Vector Machine algorithm achieved the best results in the rankings for all areas, with overall accuracy of 88.33%. The textural variables when associated with spectral, improved a little accuracy, however, there was not significant difference when the ratings were compared. Although the results have been shown with good levels of accuracy, yet there was much confusion between classes. To overcome this gap, we proposed a new method for mapping using data as variables multi-temporal in the classification process. The results showed that using the multi-temporal variables, integrated the spectral variables, obtained overall accuracy of 93% and reduced significantly the confusion among the targets, making more precise classification process. The methodology proposed in this study was efficient to map coffee areas.