Logo do repositório
Seções & Coleções
Tudo no SBICafé
Sobre o SBICafé
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Souza, Vanessa Cristina O."

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Mineração de dados espectrais para modelagem de ocorrência de cercosporiose em cafeeiros
    (Embrapa Café, 2013) Volpato, Margarete M. L.; Alves, Helena Maria R.; Vieira, Tatiana G. C.; Andrade, Lívia Naiara de; Soares, Wilian L.; Souza, Vanessa Cristina O.; Alvarenga, Miguel Thiago; Boell, Miler G.
    O monitoramento fitossanitário possibilita prever o aparecimento ou aumento de intensidade da cercosporiose (Cercospora coffeicola Berkeley & Cooke) em cafeeiros. Tradicionalmente esse monitoramento é baseado em observação de períodos críticos ocorridos. Entretanto uma das maiores dificuldades para se utilizar esse tipo de monitoramento é a aquisição de dados climáticos. Uma alternativa para superar este problema é utilizar dados e produtos de imagens de satélites, em função da cobertura espacial e temporal, e de sua relação com as variações do clima e da vegetação de uma região. Uma das dificuldades para realização desse estudo é o grande número de dados gerados, por isso optou-se pela metodologia de mineração de dados, etapa principal do processo de Descoberta de Conhecimento em Bancos de Dados (Knowledge Discovery in Databases - KDD). O presente estudo objetivou aplicar técnicas de mineração de dados para encontrar modelos de dados climáticos e espectrais associados à ocorrência da Cercosporiose em cafeeiros. As coletas de dados de campo foram realizadas na fazenda experimental da EPAMIG, em e São Sebastião de Paraíso, MG, e os dados espectrais foram adquiridos pelo sensor MODIS do satélite Terra. Os modelos gerados mostraram que a temperatura média foi o atributo de maior separabilidade na totalidade dos dados climático estudados com taxa de acerto de 67%.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify