Logo do repositório
Seções & Coleções
Tudo no SBICafé
Sobre o SBICafé
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Salvador, Guilherme Soares"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Visão computacional aplicada à avaliação de Hemileia vastatrix em Coffea arabica
    (Universidade Federal de Lavras, 2022-10-28) Salvador, Guilherme Soares; Gonçalves, Flávia Maria Avelar
    A principal doença que acomete a cultura do café é a ferrugem alaranjada, causada pelo fungo Hemileia vastatrix. Com isso, o foco dos programas de melhoramento genético do cafeeiro na obtenção de cultivares resistentes ao patógeno se torna cada vez mais essencial, a fim de minimizar os prejuízos por ele ocasionados à cafeicultura. A principal estratégia adotada para a avaliação dos genótipos resistentes à doença é a utilização de escalas diagramáticas. A partir dela, são dadas notas referentes a reação do genótipo em relação à severidade da doença. Contudo, tais avaliações são feitas visualmente e dependem da experiência do avaliador. Uma alternativa para a avaliação da severidade da doença é a utilização de imagens fotográficas e processamento destas em softwares para obtenção da severidade real e obtenção de resultados mais assertivos e conclusivos. Diante disso, o presente trabalho objetivou-se no desenvolvimento de um algoritmo para quantificação da ferrugem alaranjada e a partir das análises obtidas por meio deste, desenvolver e validar uma nova escala diagramática de avaliação da ferrugem do cafeeiro. Foram realizados dois experimentos, no qual o primeiro consistiu na coleta de folhas de cafeeiro acometidas pela doença para o treinamento e obtenção de um modelo de algoritmo para quantificação, enquanto o segundo foi conduzido em folhas destacadas e inoculadas com o fungo, alocadas em placas de Petri, em ambiente controlado, tendo como proposta desenvolver um novo método de inoculação e avaliação da doença, utilizando as cultivares Catuaí Vermelho IAC 144, Bourbon Amarelo, MGS Aranãs, MGS Paraíso e Catiguá MG2. O processamento e análise de imagens foram realizados em linguagem de programação Python, utilizando os pacotes OpenCV e Scikit-Image. Para a elaboração da escala diagramática, foram utilizadas as imagens e estimativas obtidas pelas análises de imagem. A escala diagramática desenvolvida foi validada pelo coeficiente de correlação de concordância proposto por Lin (1989) e se mostrou eficaz na quantificação de folhas doentes de cafeeiro, enquanto o algoritmo desenvolvido também se mostrou assertivo em relação à quantificação da doença. Comparou-se métodos de avaliação visual presencial e remotamente e não foi identificada diferença significativa entre as avaliações.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify