Logo do repositório
Seções & Coleções
Tudo no SBICafé
Sobre o SBICafé
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Nascimento, Ana Carolina Campana"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 4 de 4
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Análise de fatores aplicada em estudos de seleção genômica no melhoramento de Coffea canephora
    (Universidade Federal de Viçosa, 2020-02-20) Paixão, Pedro Thiago Medeiros; Nascimento, Ana Carolina Campana; Nascimento, Moysés; Azevedo, Camila Ferreira
    O Brasil se destaca em âmbito mundial na produção de café. Os incrementos observados em sua produtividade é resultado do aprimoramento de diversas metodologias. Dentre elas, destacam-se os métodos preditivos de valor genético. Estes contribuem significativamente na seleção de genótipos superiores, de forma a aumentar o ganho genético por unidade de tempo. Neste contexto, a seleção genômica ampla (GWS) é uma ferramenta que se destaca, uma vez que permite predizer o fenótipo futuro de um indivíduo baseado apenas em informações de marcadores moleculares. Realizar a seleção de maneira simultânea para várias características é o interesse da maioria dos programas de melhoramento, e a análise de fatores (AF) tem sido utilizada para auxiliar neste fim. A utilização de fatores se justifica devido a existência de correlações genéticas entre as características, as quais podem ser atribuídas aos QTL que têm efeitos pleiotrópicos ou aos QTL estreitamente ligados. Dessa forma, o objetivo deste trabalho foi de avaliar o uso da AF no contexto de GWS, em genótipos de Coffea canephora. Os resultados obtidos da seleção baseada nos fatores foram comparados, por meio da capacidade preditiva, acurácia e do coeficiente de Cohen’s Kappa, com aqueles advindos da análise das variáveis individuais. Para isso, foram utilizados dados fenotípicos e genotípicos de populações compostas por clones dos grupos varietais Conilon e Robusta e por híbridos originados de cruzamentos entre estes grupos, avaliados durante três anos consecutivos (2014 a 2016), e uma densidade de 18111 marcadores SNPs identificados. A partir dos resultados observados, verificou-se que a AF foi eficiente para elucidar as relações entre as características e originar novas variáveis. Os fatores formados são interessantes em termos de seleção, pois além de permitirem interpretações conjuntas, apresentam boas estimativas de capacidade preditiva, herdabilidade e acurácia. Ademais observou-se alta concordância entre os indivíduos selecionados com base nos fatores e aqueles selecionados considerando as variáveis individuais. Entretanto, cabe destacar que, a seleção baseada nos fatores conseguiu selecionar indivíduos de porte mais adequado. Palavras-chave: Predição Genômica. Análise Multivariada. Melhoramento Genético.
  • Imagem de Miniatura
    Item
    Computational intelligence and statistical learning applied to Coffea canephora
    (Universidade Federal de Viçosa, 2022-05-02) Sousa, Ithalo Coelho de; Nascimento, Moysés; Sant’anna, Isabela de Castro; Cruz, Cosme Damião; Azevedo, Camila Ferreira; Nascimento, Ana Carolina Campana
    Genomic prediction in Coffee breeding has shown good potential in predictive ability (PA), genetic gains and reduction of the selection cycle time. Many methodologies are used to predict the genetic merit, but some of them require priori assumptions that may increase the complexity of the model. Artificial neural network (ANN) has advantage to not require priori assumptions about the relationships between inputs and the output allowing great flexibility to handle different types of complex non-additive effects, such as dominance and epistasis. Despite this advantage, the biological interpretability of ANNs is still limited. In the elaboration of this research project, two basic questions were formulated. The first question, is it possible to estimate genetic parameters using ANNs? The second, is it possible to reduce the panel marker size with no penalty in predictive ability? For this, the analyzes were divided into two articles. In the first article, the aim was to estimate the heritability and markers effects for two traits in Coffea canephora using an additive-dominance architecture ANN and to compare it with genomic best linear unbiased prediction (GBLUP). In the second article, the aim was to evaluate the trade-off between density marker panels size and the PA for eight agronomic traits in Coffea canephora using machine learning (bagging and random forest) algorithms and comparing them with BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator) method. For both article, the data set consisted of 165 genotypes of Coffea canephora genotyped for 14,387 snp markers, after quality control analysis. For the first article the phenotypic data used was rust (Rus) and yield (Y). For the second article the phenotypic data is composed by vegetative vigor (Vig), rust (Rus) and cercosporiose incidence (Cer), fruit maturation time (Mat), fruit size (FS), plant height (PH), diameter of the canopy projection (DC) and yield (Y). In the first article we reduced the dimensionality of the data using bagging decision tree and then run 64,000 neural networks for each trait selecting the best architecture based on predictive ability for estimating the heritability, obtained results compatibles with those in literature. In the second article, 12 different density market panels were used to evaluate the effect of dimensionality reduction in PA. The common trend observed in the analysis shows an increase of the PA as the number of markers decreases, having a peak in most of the cases when used between 500 and 1,000 markers. In general, the worst results were obtained when used the full SNP panel density. The results of the second article indicate that the reduction of the number of markers can improve the selection of individuals at a lower cost. Computational Intelligence methods prove to be powerful tools for predicting genetic values, to estimate genetic parameters and to select markers. Keywords: GBLUP. BLASSO. BAGGING. Random forest. GEBV. Marker effect. Heritability.
  • Imagem de Miniatura
    Item
    Genomic prediction of leaf rust resistance to Arabica coffee using machine learning algorithms
    (Escola Superior de Agricultura "Luiz de Queiroz", 2021) Sousa, Ithalo Coelho de; Nascimento, Moysés; Silva, Gabi Nunes; Nascimento, Ana Carolina Campana; Cruz, Cosme Damião; Silva, Fabyano Fonseca e; Almeida, Dênia Pires de; Pestana, Kátia Nogueira; Azevedo, Camila Ferreira; Zambolim, Laércio; Caixeta, Eveline Teixeira
    Genomic selection (GS) emphasizes the simultaneous prediction of the genetic effects of thousands of scattered markers over the genome. Several statistical methodologies have been used in GS for the prediction of genetic merit. In general, such methodologies require certain assumptions about the data, such as the normality of the distribution of phenotypic values. To circumvent the non-normality of phenotypic values, the literature suggests the use of Bayesian Generalized Linear Regression (GBLASSO). Another alternative is the models based on machine learning, represented by methodologies such as Artificial Neural Networks (ANN), Decision Trees (DT) and related possible refinements such as Bagging, Random Forest and Boosting. This study aimed to use DT and its refinements for predicting resistance to orange rust in Arabica coffee. Additionally, DT and its refinements were used to identify the importance of markers related to the characteristic of interest. The results were compared with those from GBLASSO and ANN. Data on coffee rust resistance of 245 Arabica coffee plants genotyped for 137 markers were used. The DT refinements presented equal or inferior values of Apparent Error Rate compared to those obtained by DT, GBLASSO, and ANN. Moreover, DT refinements were able to identify important markers for the characteristic of interest. Out of 14 of the most important markers analyzed in each methodology, 9.3 markers on average were in regions of quantitative trait loci (QTLs) related to resistance to disease listed in the literature.
  • Imagem de Miniatura
    Item
    Painéis de marcadores de baixa densidade para a predição genômica de Coffea arábica L.
    (Universidade Federal de Viçosa, 2021-07-22) Arcanjo, Edilaine Silva; Nascimento, Ana Carolina Campana; Azevedo, Camila Ferreira; Nascimento, Moysés
    Os processos de melhoramento genético são primordiais para o desenvolvimento de novas cultivares. Em decorrência da importância da cafeicultura brasileira, esse setor tem sofrido transformações através das pesquisas em programas de melhoramento. Os progressos do Coffea arábica atingidos pelo melhoramento genético têm propiciado a aquisição e recomendação de inúmeras cultivares que possuem características que a elas foram adicionadas por essa técnica. Entretanto, um dos maiores impasses do melhoramento genético vegetal é que para a obtenção de uma nova cultivar, o processo é muitas vezes lento e demorado. Dessa forma, o uso da biotecnologia, com a utilização dos marcadores moleculares, apresentou-se como uma alternativa para amenizar esse problema. Neste contexto, foi proposto a seleção genômica ampla (Genome Wide Selection-GWS), que parte do pressuposto que todos os segmentos do genoma colaboram para a variação genética e cada segmento está em alto desequilíbrio de ligação (LD) com no mínimo um marcador genético conhecido. A GWS fundamenta-se nos marcadores moleculares do tipo SNP (Single Nucleotide Polymorphism), que são abundantemente distribuídos ao longo do DNA. Com o advento dos SNPs, os valores genéticos genômicos estimados (GEBVs) puderam ser calculados através dos efeitos desses marcadores. Desse modo, os SNPs têm proporcionado a melhor cobertura do genoma; no entanto, normalmente a execução da seleção genômica requer uma grande genotipagem populacional para os indivíduos de treinamento e os candidatos à seleção, o que pode ocasionar em um aumento do custo total do programa de melhoramento. Assim, este trabalho teve por objetivo avaliar a viabilidade do uso de painéis de marcadores de baixa densidade na predição do GEBV de características economicamente importantes de C. arábica, com a finalidade de reduzir os custos de genotipagem a partir da utilização de chips customizados. Os resultados obtidos neste estudo demonstraram que o uso desses painéis na GWS pode ser uma ferramenta útil para o melhoramento dessa espécie, uma vez que modelos baseados nestes painéis apresentaram boas estimativas de capacidades preditivas e substanciais valores de concordância em termos de seleção quando comparados à modelos de maior densidade de marcadores. Palavras-chave: Melhoramento Genético. Café. Seleção Genômica. G-BLUP.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify