Logo do repositório
Seções & Coleções
Tudo no SBICafé
Sobre o SBICafé
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Cabanillas-Pardo, Lenin"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Efectividad de un prototipo seleccionador de café cerezo con reconocimiento de imágenes usando machine learning
    (Universidade Federal Rural de Pernambuco, 2023-03-14) Valles-Coral, Miguel Angel; Bernales-del-Aguila, Carlos Ivan; Benavides-Cuvas, Elmer; Cabanillas-Pardo, Lenin
    La producción de cafés especiales es el objetivo principal de los caficultores a nivel mundial y depende de la selección de granos óptimos; sin embargo, especialmente en Latinoamérica, son procesados de manera manual y está influenciado por la subjetividad. El objetivo del artículo fue comprobar la efectividad de un prototipo seleccionador de café cerezo con reconocimiento de imágenes usando machine learning en tiempo real frente al método tradicional en la Asociación Valle Grande, Perú. Se empleó el procesamiento de redes neuronales covolucionales. Se entrenaron con el algoritmo YOLOv3 24.000 imágenes etiquetadas en el programa Labellmg de granos Catimor verde, maduro, pintón, sobre-maduro y seco. Los resultados describen el procedimiento de diseño y ensamblaje mecánico-electrónico del prototipo con las especificaciones técnicas necesarias para su replicación; además, demuestran su efectividad respecto a la reducción del tiempo de selección en 3 h aproximadamente, con un nivel de precisión del 94,00% en cuatro muestras de 100 kg de café. Se concluye que el prototipo es una alternativa potencial, reduciendo el costo, ahorrando tiempo y proporcionando una herramienta útil para garantizar la selección de granos que permita obtener calidad superior a 83 puntos SCAA.

DSpace software copyright © 2002-2025 LYRASIS

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify