Diante do cenário atual de disponibilidade e competição pelos recursos hídricos na agricultura, a gestão do uso da água pela irrigação racional, econômica e ecologicamente sustentável é fundamental. O manejo da irrigação geralmente é feito relacionando à condição de umidade do solo e às variações atmosféricas, contudo, as próprias plantas são as melhores indicadoras do seu status hídrico, pois integram automaticamente os fatores que afetam o seu estado de hidratação. Aprimorando as medições do consumo de água pelas plantas, estão sendo desenvolvidos novos métodos que permitem estimar a transpiração, através do fluxo de seiva. Portanto, objetivou-se neste trabalho, desenvolver um sensor de fluxo de seiva e elaborar um coeficiente de estresse hídrico para o cafeeiro Coffea canephora cv. Conilon, clone 12 V, pertencente à variedade clonal “Vitória Incaper 8142”. O experimento foi conduzido em casa de vegetação, na Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes – RJ, em vasos plásticos de 20 L, preenchidos com substrato comercial e húmus de minhoca. Foram monitoradas 16 plantas de cafeeiro, ao acaso, sendo que em 8 plantas, o solo foi mantido na capacidade de campo caracterizando o tratamento irrigado (T1). No tratamento não irrigado (T2), houve interrupção total do fornecimento de água para as mesmas, até alcançar um potencial hídrico foliar entre -2,0 e -3,0 MPa, considerado um estresse hídrico severo. As plantas foram submetidas a três ciclos de irrigação alternados com o corte da irrigação. Para os três ciclos avaliados, com a diminuição significativa da porcentagem de umidade do solo, ocorreu a diminuição do potencial hídrico foliar e consequente, queda nos valores de condutância estomática, transpiração e de fotossíntese para as plantas do T2, sendo significativamente menor comparadas às plantas do T1. A altura relativa, o número de folhas e a área foliar relativa das plantas do T1 foram significativamente maiores, somente para o segundo ciclo de avaliação. Porém, para o diâmetro do caule e o número relativo de ramos, não houve diferenças significativas entre tratamentos, para os três ciclos desenvolvidos. Para o comprimento da nervura central, foi verificado diferença significativa somente no terceiro ciclo, onde as plantas do T2 estabilizaram seu crescimento como consequência do estresse hídrico aplicado, retomando-o após o retorno da irrigação. Com relação à calibração dos sensores, foi observado uma correlação linear positiva entre o sinal real do sensor e a evapotranspiração de referência (ETo). Como resultado, para as plantas analisadas, obteve-se uma relação, estatisticamente significativa, entre o sinal do sensor e a ETo em uma situação de irrigação plena (T1). Isto possibilitou a elaboração de um coeficiente de estresse hídrico (CEH), em que o valor 0 (zero) indica ausência de estresse e 1 (um) indica o máximo estresse (sem transpiração). Para o tratamento T2, o coeficiente variou dentro da faixa estimada, sendo possível identificar o status hídrico das plantas, com diferença estatisticamente significativa em relação ao tratamento T1. O CEH proposto apresentou boa correlação com as variáveis: umidade do solo, potencial hídrico foliar antemanhã, condutância estomática, transpiração e fotossíntese, com valores de coeficiente de determinação (R2) iguais a 0,70; 0,75; 0,72; 0,72 e 0,78, respectivamente. Portanto, o sensor de fluxo de seiva proposto, pode ser usado na detecção de fluxo de seiva em plantas jovens de cafeeiro conilon, clone 12 V, bem como, na elaboração do CEH e, estimar o status hídrico das plantas.
Facing the current scenario of availability and competition for water resources in agriculture, management of water use for rational irrigation, economically and ecologically sustainable is fundamental. Irrigation management is usually done by relating soil moisture conditions and atmospheric variations, however, the plants themselves are the best indicator of its water status by automatically integrating the factors that affect their hydration state. Improving the measurements of water consumption by plants, new methods that allow to estimate transpiration through the sap flow are being developed. Therefore, the aim of this work was to develop a sap flow sensor and also elaborate a water stress coefficient for the coffee tree Coffea canephora cv. Conilon, clone 12 V, belonging to the clonal variety “Vitória Incaper 8142”. The experiment was conducted in a greenhouse at the Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes - RJ, in plastic pots of 20 L, filled with commercial substrate and earthworm humus. Sixteen coffee plants were randomly monitored, and in eight plants, the soil was kept at field capacity characterizing the irrigated treatment (T1). In the non-irrigated treatment (T2), there was total interruption of water supply until it reaches a leaf water potential between -2.0 and -3.0 MPa, which is considered a severe water stress. The plants were subjected to three cycles of irrigation, alternated with no irrigation. For the three evaluated cycles, with a significant decrease in the percentage of soil moisture, there was a decrease in leaf water potential and the consequent decrease in stomatal conductance values, transpiration and photosynthesis for T2 plants, being significantly lower compared to T1 plants. The relative height, leaf number and the relative leaf area on the T1 plants were significantly higher only in the second evaluation cycle. However, for the stem diameter and the relative number of branches, there were no significant differences between treatments for the three cycles developed. For the length of midrib, a significant difference was found only in the third cycle, where T2 plants stabilized its growth as a result of water stress applied, returning it after start to irrigate again. Regarding the calibration of the sensors, a positive linear correlation between the actual sensor signal and the reference evapotranspiration (ETo) was observed. As a result, for the plants analyzed, a statistically significant correlation between the sensor signal and ETo in a situation of full irrigation (T1) was obtained. This allowed the development of a water stress coefficient (CEH), where the value 0 (zero) indicates the absence of stress and 1 (one) indicates the maximum stress (with no transpiration). For the treatment T2, the coefficient varied within the estimated range, making it possible to identify the water status of the plants with a statistically significant difference compared to treatment T1. The proposed CEH presented a good correlation with the variables: soil moisture, predawn leaf water potential, stomatal conductance, transpiration and photosynthesis, with determination coefficient values (R2) equal to 0.70; 0.75; 0.72; 0.72 and 0.78, respectively. Therefore, the sap flow sensor proposed, can be used in the sap flow detection in young conilon coffee plants, clone 12 V, as well as in the development of CEH and, estimate the water status of the plants.