The objective of this work was to estimate the coffee supply by calibrating statistical models with economic and climatic variables for the main producing regions of the state of São Paulo, Brazil. The regions were Batatais, Caconde, Cássia dos Coqueiros, Cristais Paulista, Espírito Santo do Pinhal, Marília, Mococa, and Osvaldo Cruz. Data on coffee supply, economic variables (rural credit, rural agricultural credit, and production value), and climatic variables (air temperature, rainfall, potential evapotranspiration, water deficit, and water surplus) for each region, during the period from 2000–2014, were used. The models were calibrated using multiple linear regression, and all possible combinations were tested for selecting the variables. Coffee supply was the dependent variable, and the other ones were considered independent. The accuracy and precision of the models were assessed by the mean absolute percentage error and the adjusted coefficient of determination, respectively. The variables that most affect coffee supply are production value and air temperature. Coffee supply can be estimated with multiple linear regressions using economic and climatic variables. The most accurate models are those calibrated to estimate coffee supply for the regions of Cássia dos Coqueiros and Osvaldo Cruz.
O objetivo deste trabalho foi estimar a oferta cafeeira por meio da calibração de modelos estatísticos, com variáveis econômicas e climáticas, das principais regiões produtoras do Estado de São Paulo. As regiões estudadas foram Batatais, Caconde, Cássia dos Coqueiros, Cristais Paulista, Espírito Santo do Pinhal, Marília, Mococa e Osvaldo Cruz. Foram utilizados dados de oferta cafeeira, variáveis econômicas (crédito rural, crédito rural na agricultura e valor da produção) e variáveis climáticas (temperatura do ar, precipitação pluvial, evapotranspiração potencial, deficiência e excedente hídrico) de cada região, para o período de 2000– 2014. Os modelos foram calibrados com uso de técnicas de regressão linear múltipla, e todas as combinações possíveis foram testadas para a seleção das variáveis. A oferta cafeeira foi a variável dependente, e as demais, as independentes. A acurácia e a precisão dos modelos foram analisadas pelo erro percentual médio e pelo coeficiente de determinação ajustado, respectivamente. As variáveis que mais influenciam a oferta cafeeira são o valor de produção e a temperatura do ar. É possível estimar a oferta cafeeira com regressões lineares múltiplas por meio de variáveis econômicas e elementos climáticos. Os modelos mais acurados são os calibrados para estimar a oferta cafeeira das regiões de Cássia dos Coqueiros e Osvaldo Cruz.