O conhecimento de técnicas eficazes de previsão de safra é de grande importância para o mercado cafeeiro, possibilitando melhor planejamento e tornando a atividade mais sustentável. Objetivou-se, neste trabalho, adaptar um modelo de previsão da produtividade do cafeeiro, baseado na disponibilidade hídrica, para as cidades de Lavras e Varginha, no sul de Minas Gerais. Os modelos foram gerados a partir da regressão linear múltipla da quebra de produtividade (Ye/Yp), em função da produtividade do ano anterior (Ya/Yp) e do déficit hídrico em diferentes fases fenológicas (ETR/ETP) i . Durante as parametrizações, foram obtidos os coeficientes de resposta ao déficit hídrico (Ky i ) e o coeficiente relativo à produção do ano anterior (Ky 0 ). Através da seleção backward, foram obtidos modelos que apresentassem apenas coeficientes significativos. Nesse processo, os modelos apresentaram grande sensibilidade ao período mais chuvoso (novembro a abril) e variáveis referentes a períodos importantes, como o de florescimento, não apresentaram significância. Foi concluído que os modelos apresentam bom potencial para a previsão de safras de cafeeiro. Nestes, a produtividade do ano anterior deve ser considerada e a sequência fenológica que apresentou melhor desempenho foi Set./Out, Nov./Dez., Jan./Fev., Mar./Abr.
Knowledge of effective crop forecasting techniques is of great importance for the coffee market, enabling better planning and making more sustainable this activity. This study aimed to adapt a predictive model of coffee yield, based on water availability, to the cities of Lavras and Varginha, in southern Minas Gerais, Brazil. The models were generated from multiple linear regression of productivity loss (Ye/Yp) as a function of the previous year productivity (Ya/Yp) and water deficit in the different phenological phases, represented by relative evapotranspiration (ETR/ETP)i. During the parameterization, the water deficit response coefficients (Ky i) and the previous year production coefficient (Ky 0) were obtained. By the backward selection methodology, were obtained models that presented only significant coefficients. In this process, in general, the models were highly sensitive to the rainy season (November to April), and variables related to important periods such as flowering were not significant. It was concluded that the models have good potential for coffee crop forecasting. In these, previous year’s yield should be considered and the phenological sequence with best performance was Sep./Oct, Nov./Dec., Jan./Feb., Sep. /Apr.