33º Congresso Brasileiro de Pesquisas Cafeeiras

COMPOSTOS FENÓLICOS EM DOIS PADRÕES DA BEBIDA DO CAFÉ (COFFEA ARABICA L.)

SA Abrahão¹; AR Lima²; FA Loures³; RGFA Pereira⁴; SMS Duarte⁵; EB Ferreira⁵·1. Doutoranda; Departamento Ciência dos Alimentos - Universidade Federal de Lavras; sheilanutri@yahoo.com.br;2. Mestranda; Departamento Ciência dos Alimentos - Universidade Federal de Lavras;3. Graduando; Departamento de Engenharia Agrícola – Universidade Federal de Lavras; 4. Professora Doutora; Departamento Ciência dos Alimentos - Universidade Federal de Lavras 5. Professor(a) Doutor(a); Universidade Federal de Alfenas

Os compostos fenólicos são metabólitos secundários de plantas envolvidos na adaptação a condições de estresse ambiental. Alguns efeitos fisiológicos, observados em animais e humanos e em estudos "in vitro", são associados à presença de grande quantidade de compostos fenólicos na bebida de café. A atividade antioxidante de compostos fenólicos deve-se principalmente às suas propriedades redutoras e estrutura química. Estas características desempenham um papel importante na neutralização ou seqüestro de radicais livres e quelação de metais de transição, agindo tanto na etapa de iniciação como na propagação do processo oxidativo (Souza et al., 2007). Durante o processamento do café, os polifenóis podem ser parcialmente isomerizados, hidrolizados ou degradados a compostos de baixo peso molecular. As altas temperaturas observadas no processo de torrefação produzem também a formação de lactonas e a polimerização destes com outros componentes do café para formar melanoidinas, compostos que também apresentam propriedades antioxidantes.

Os polifenóis possuem também um papel importante na formação do aroma e sabor do café, contribuindo com a acidez final e adstringência da bebida (Variyar et al., 2003). De acordo com a literatura cafés de qualidade superior apresentam menores teores deste composto quando comparados à cafés de baixa qualidade.

Diante do exposto, o presente estudo teve como objetivo analisar a o teor de compostos fenólicos em dois padrões da bebida do café.

O ponto de torração das amostras de café foi padronizado pelo binômio tempo / temperatura (180°C/10 min) e logo em seguida a cor foi analisada. Os resultados médios obtidos referentes aos cafés bebida rio e bebida mole para a variável cor são apresentados na Tabela 1.

Tabela 1 - Análise de cor dos grãos de café torrado e moído, de acordo com os parâmetros de cromaticidade da escala L* a* b*.

	Parâmetros de Cromaticidade					
Tipo de Bebida	L*	a*	<i>b</i> *	<i>c</i> *	h _{ab} *	
Rio	32,95	11,48	8,43	14,24	36,29	
Mole	32,83	11,29	8,27	13,99	36,22	
Média	32,89	11,38	8,35	14,11	36,25	

Os resultados expressos na Tabela acima permitem verificar que não houve diferença nos valores de L* a* b* e c* entre os padrões de bebida analisados e que a tonalidade (hab) obtida foi a mesma, o que indica que a temperatura e o tempo utilizados permitiram que o mesmo grau de torração fosse obtido. Tal resultado é de grande importância para que a composição química dos cafés amostrados possam ser comparadas.

Determinou-se o teor de compostos fenólicos totais dos diferentes extratos de café obtidos. Os valores percentuais médios das determinações dos compostos fenólicos totais dos cafés *in natura* e dos cafés torrados são apresentados na Tabela 2.

Tabela 2 - Conteúdo de polifenóis (g eq. ac. tânico / 100g) de dois tipos de bebida do café submetido a dois tipos de processamento.

	Proces			
Tipo de Bebida —	Cru	Torrado	Média	
Rio	5,43 aA	4,83 aB	4,65	
Mole	4,77 bA	4,51 aA	4,77	
Média	4,90	4,52		

Médias seguidas por letras minúsculas iguais dentro de cada coluna e médias seguidas por letras maiúsculas iguais dentro de cada linha não diferem entre si (p>0,05), pelo teste de Tukey.

Existem indícios de ocorrência de maior concentração de polifenóis em cafés de pior qualidade. No presente estudo a bebida de pior qualidade analisada, bebida rio, também demonstrou um maior teor de compostos fenólicos (5,43%) do que o café de qualidade superior, bebida mole (4,77%), nas amostras *in natura* (p<0,05).

De acordo com os dados expressos na Tabela 2, no grão cru, houve uma variação significativa, nos teores de fenólicos entre os distintos padrões de bebidas analisados, o que não ocorreu com os

grãos torrados. A variação na degradação desses compostos com a torração pode ser considerada como causa destas diferenças. A bebida rio destacou-se com o maior teor de fenólicos no grão cru e maior perda destes compostos com a torração. A bebida mole apesar de apresentar um teor de polifenóis mais baixo demonstrou uma maior termoestabilidade, ou seja, menor perda desses compostos durante a torração.

Os compostos fenólicos estão amplamente distribuídos nos vegetais incluindo frutos, legumes, grãos, gramíneas, verduras, sementes, ervas, especiarias e algas, podendo ser obtidos a partir de flores, folhas, raízes e cascas. Estes compostos constituem uma das principais classes de antioxidantes naturais. Karakaya & Tas (2001), avaliaram a atividade antioxidante e o conteúdo de fenólicos totais de alimentos comumente consumidos na Turquia. Os pesquisadores verificaram que tanto o café turco (fervido) quanto o café instantâneo tiveram uma correlação positiva entre o conteúdo de fenólicos e a atividade antioxidante. Tzao et al. (2005), também verificaram uma correlação positiva entre a atividade antioxidante de casca de maçã e o conteúdo de fenólicos.

Sendo assim, como os teores de polifenóis encontrados para os grãos torrados dos dois padrões de bebida estudados não foram estatisticamente diferentes, sugere-se que apesar da diferença apresentada na análise sensorial, os cafés bebida rio e mole possuem a mesma capacidade de atuação contra as oxidações biológicas.

De acordo com a Tabela 3 pode-se observar que os padrões de bebida analisados não diferiram entre si, quanto ao conteúdo de sólidos solúveis, nos extratos preparados com grãos de cafés, torrados e crus, indicando que foram comparadas amostras com rendimento semelhante.

Tabela 3 - Intervalo de 95% de confiança do conteúdo médio de sólidos solúveis (%) de dois tipos de bebida do café crus e torrados.

_			
Tipo de Bebida	Cru	Torrado	Média
Rio	[2,14; 2,29]	[2,03; 2,16]	2,15
Mole	[2,21; 2,36]	[1,74; 2,24]	2,13
Média	2,25	2,04	

Os resultados obtidos na presente pesquisa permitem sugerir que:

- O café rio cru analisado demonstrou maior teor de compostos fenólicos que os cafés torrados;
- Independente da classificação sensorial da bebida, os cafés bebida rio e mole possuem a mesma capacidade de atuação contra as oxidações biológicas;