MICHELLE BAYERL FERNANDES

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE GENES QUE CODIFICAM PROTEÍNAS SECRETADAS POR *Hemileia vastatrix* NA INTERAÇÃO COM O CAFEEIRO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Fitopatologia, para obtenção do título de *Magister Scientiae*.

VIÇOSA MINAS GERAIS – BRASIL 2011

MICHELLE BAYERL FERNANDES

IDENTIFICAÇÃO E CARACTERIZAÇÃO DE GENES QUE CODIFICAM PROTEÍNAS SECRETADAS POR *Hemileia vastatrix* NA INTERAÇÃO COM O CAFEEIRO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Fitopatologia, para obtenção do título de *Magister Scientiae*.

APROVADA: 24 de fevereiro de 2011.

Prof. Olinto Liparini Pereira (Co-orientador) Prof^a. Marisa Vieira de Queiroz

Prof. Gleiber Quintão Furtado

Prof. Sérgio Hermínio Brommonschenkel (Orientador)

AGRADECIMENTOS

A Deus, por sempre se fazer presente em minha vida

À minha família, por todo amor, carinho apoio e força para realizar mais essa etapa da minha vida. Amo vocês!

Ao meu esposo Helton, pelo amor, compreensão, apoio, ajuda e principalmente pela paciência.

Ao orientador Sérgio Brommonschenkel, pela orientação, ensinamentos, confiança e amizade durante esses 5 anos de convivência.

Aos meus queridos amigos do Laboratório de Genômica. Aos antigos: Fernanda, Sônia, Janaína, Cynthia, Ricardo...saudades! E aos atuais: Gustavo, Jamile, Dani, Poly, Yukari, Elias, Ricardo, Daniel, Gabi, Tadeu, Marcos, Thiago, Tácio, Luís e de modo muito especial a Lívia e a Sandrinha. Obrigada por todos os momentos que passamos juntos, pelos ensinamentos, pelas boas risadas, pelos conselhos, pela força, pela amizade, pelas festinhas "surpresa" de aniversário. Sentirei muitas saudades de todos!!!

Aos amigos Paty, Dalila, Érica, Poly e Eduardo, pelos ensinamentos, pelas noites não dormidas em conjunto e principalmente pela amizade e companherismo.

Aos velhos, novos e eternos amigos Dê, Ju, Elaine, André, Luíza, Guilherme, Myriam, Paulo Afonso, Karina, Jarbas e Monize, simplesmente amo vocês!

À Universidade Federal de Viçosa, ao Departamento de Fitopatologia, ao Núcleo de Biotecnologia aplicada à Agropecuária (BIOAGRO) pela formação científica e profissional.

Aos professores, Olinto, Marisa e Gleiber pelas valiosas sugestões dada a esse trabalho.

À FAPEMIG pela bolsa concedida.

À todos que de alguma forma contribuíram para realização deste trabalho.

BIOGRAFIA

MICHELLE BAYERL FERNANDES, filha de Dejair Pereira Fernandes e Edilze Bayerl Fernandes, nasceu no Rio de Janeiro – RJ, no dia 14 de dezembro de 1984.

Em março de 2004, ingressou no curso de Agronomia pela Universidade Federal de Viçosa, graduando-se em 30 de janeiro de 2009.

Em março de 2009, ingressou no Programa de Pós-Graduação, em nível de Mestrado, do Departamento de Fitopatologia da Universidade Federal de Viçosa, submetendo-se a defesa de dissertação em 24 de fevereiro de 2011.

ÍNDICE

RESUMOv
ABSTRACTvii
1. INTRODUÇÃO1
2. REVISÃO DE LITERATURA4
2.1 – Ferrugem do cafeeiro: importância, sintomas e controle4
2.2 – Hemileia vastatrix: mecanismo de patogênese e variabilidade7
2.3 – Proteínas efetoras de fungos11
2.4 – Identificação de genes efetores143. MATERIAL E MÉTODOS17
3.1 – Obtenção do inóculo e material infectado para a construção da biblioteca de cDNA
3.2 – Construção e sequenciamento da biblioteca de cDNA18
3.3 – Análises de bioinformática19
3.4 – Seleção de genes candidatos e amplificação das ORFs a partir do cDNA21
 3.5 – Análise da secreção das proteínas codificadas pelos genes selecionadas no sistema YST
3.6 – Extração do DNA genômico de H. vastatrix e amplificação das ORFs para
análise da estrutura genômica dos genes selecionados23
4. RESULTADOS25
4.1– Identificação de clones de cDNA de <i>H. vastatrix</i> que codificam proteínas putativas secretadas
4.2 – Estrutura genômica dos clones selecionados35
5. DISCUSSÃO42
6. CONCLUSÃO48
7. REFERÊNCIAS BIBLIOGRÁFICAS49
8. ANEXO

RESUMO

FERNANDES, Michelle Bayerl, M. Sc., Universidade Federal de Viçosa, fevereiro de 2011. Identificação e caracterização de genes que codificam proteínas secretadas por *Hemileia vastatrix* na interação com o cafeeiro. Orientador: Sérgio Hermínio Brommonschenkel. Co-orientadores: Eduardo Seiti Gomide Mizubuti e Olinto Liparini Pereira.

A ferrugem causada pelo fungo biotrófico Hemileia vastatrix é a doença mais importante do cafeeiro, pois atinge, com gravidade, grandes áreas de lavouras, onde causa prejuízos na produtividade e seu controle aumenta os custos de produção. O presente trabalho teve por objetivo identificar genes de H. vastatrix que codificam proteínas secretadas que possam funcionar como efetores necessários para o estabelecimento da interação biotrófica e, ou, como desencadeadores de respostas de resistência, por meio da análise de um banco constituídos por 9828 etiquetas de sequências expressas (ESTs) em uma interação suscetível. Essas ESTs foram geradas pelo sequenciamento da extremidade 5'de clones de cDNA de uma biblioteca construída a partir de mRNA isolado de folhas de cafeeiro coletadas 12 dias após a inoculação com o isolado monopustular HV-01. Foram obtidos 1004 contíguos e 3301 singletos após o alinhamento das sequências pelo programa CAP3. A partir de 890 transcritos únicos que codificam proteínas sem similaridade a sequências do banco não redundante do GenBank/NCBI e que não possuíam identidade a sequências de Coffea spp. também depositadas nesse banco de dados, foram obtidas 46 ORFs que codificam peptídeos com mais de 60 aminoácidos e predição positiva em cinco ou mais parâmetros do algoritmo de predição de sequências sinal de exportação SignalP. Foram selecionados cinco genes que tiveram a região da ORF amplificada do genoma de *H. vastatrix*, gerando fragmentos iguais ou maiores aos amplificados a partir do cDNA. Esses genes, exclusivos de H. vastatrix, não mostraram identidade com sequências únicas derivadas de esporos germinados desse patógeno, demonstrando que a sua expressão ocorre no interior do tecido infectado. A secreção das proteínas codificadas por quatro genes foi confirmada em levedura. Estudos funcionais deverão ser realizados para comprovar

v

a atividade efetora dos genes caracterizados, assim como dos demais genes identificados nesse estudo, cuja origem fúngica e secreção das proteínas preditas em levedura seja demonstrada.

ABSTRACT

FERNANDES, Michelle Bayerl, M.Sc., Universidade Federal de Viçosa, February, 2011. Identification and characterization of genes encoding proteins secreted by *Hemileia vastatrix* during interaction with coffee. Adviser: Sérgio Hermínio Brommonschenkel. Co-Advisers: Eduardo Seiti Gomide Mizubuti and Olinto Liparini Pereira

The coffee leaf rust caused by the biotrophic fungus *Hemileia vastatrix*, it is the most important fungal disease of coffee, causing productivity losses and its control increases the costs of coffee production. This study aimed to identify genes of H. vastatrix that encode secreted proteins that may function as effectors needed for the establishment of the biotrophic interaction and / or as triggers of resistance responses, by analyzing a database consisting of 9828 expressed sequence tags (ESTs) from an susceptible interaction. These ESTs were generated by sequencing the 5' end of cDNA clones from a library constructed from mRNA isolated from coffee leaves collected 12 days after inoculation with single pustule isolation HV-01. It was obtained 1004 contigs and 3301 singlets after clustering the sequences using the CAP3 program. From 890 unique transcripts that encode proteins without similarity to sequences of non-redundant database of GenBank / NCBI, which had no identity to sequences of Coffea spp., also deposited in this database, were identified 46 ORFs that encode peptides over 60 amino acids with positive prediction from five or more parameters of algorithms used to predict secretion signal sequences. We selected five genes which were amplified from the *H. vastatrix* genome, generating fragments equal or higher than those amplified from cDNAs. These genes, unique to H. vastatrix showed no identity with cDNA sequences derived from germination spores, demonstrating that their expression may occur within the infected tissue. The secretion of proteins encoded by four genes was demonstrated using the Yeast Secretion System. Functional studies should be conducted to confirm the effector activity of the genes characterized, as well as from other genes identified in this study, whose origin and secretion of fungal the predicted proteins in yeast has been demonstrated.

vii

1. INTRODUÇÃO

O Brasil é o maior produtor mundial de café, o segundo maior consumidor da bebida, é um dos principais exportadores de café solúvel e torrado e supre 32% do mercado mundial em grão *in natura* (MAPA, 2011). A cafeicultura se fixou, inicialmente, no sudeste e depois se expandiu para o Paraná e Bahia. Atualmente, o cafeeiro é cultivado em 14 estados, com área plantada de 2,3 milhões de hectares, equivalente a cerca de seis bilhões de plantas. O setor emprega direta e indiretamente oito milhões de trabalhadores (MAPA, 2011).

A ferrugem do cafeeiro, causada pelo fungo *Hemileia vastratrix* Berk. & Br., é a principal doença fúngica do cafeeiro (Zambolim *et al.*, 1999). A ferrugem provoca a queda prematura das folhas doentes, podendo levar a seca dos ramos e consequentemente a redução da produtividade. Além disso, a seca dos ramos reduz a vida útil da lavoura, tornando-a antieconômica. Em condições favoráveis e na ausência de controle, a ferrugem pode causar perdas de 35 a 50% da produção, principalmente em *C. arabica*, espécie mais cultivada (70% da produção) e também a mais suscetível a ferrugem, principalmente em ano de alta produção (Zambolim *et al.*, 2005).

Atualmente, as principais medidas recomendadas para o controle da ferrugem do cafeeiro são a nutrição equilibrada das plantas e pulverizações com fungicidas protetores a base de cobre ou sistêmicos do grupo químico dos triazóis isoladamente ou em misturas com estrubilurinas (Lopes *et al.*, 2009). Entretanto, o emprego de cultivares resistentes é o melhor método de controle porque é econômico, eficiente e não causa impactos ambientais (Zambolim *et al.*, 2005). Várias cultivares de cafeeiro resistentes à ferrugem foram liberadas nos últimos anos como, por exemplo, as cultivares Oeiras, Paraíso, IAPAR 59, Acauã, Catucaí e Icatú dentre outras (Matiello & Almeida, 2006). Essas cultivares tem sido empregadas em áreas onde há dificuldade no controle químico, seja pelos sistemas de plantio, pela declividade, ou pelo mais baixo nível tecnológico dos agricultores (Matiello & Almeida, 2006). Entretanto, agricultores (Matiello & Almeida, 2006). Entretanto, para os melhoristas é o surgimento de novas raças do patógeno capazes de suplantar a resistência dos cultivares resistentes desenvolvidos. Por exemplo, a resistência das cultivares Oeiras e Icatú

Vermelho, foram suplantadas cerca de 9 e 15 anos, respectivamente, após seu lançamento comercial (Capucho *et al.*, 2009).

Por meio dos estudos genéticos da interação ferrugem do linho (*Melampsora lini*) – linho, Flor (1956) demonstrou que o fenótipo de interações planta-patógeno é determinado pelo genótipo do hospedeiro e pelo genótipo do patógeno, em uma interação gene-a-gene. Assim, o fenótipo de resistência só é observado quando genótipos da planta hospedeira contendo genes de resistência dominantes (gene *R*) interagem com genótipos do patógeno que contém genes de avirulência dominantes correspondentes (genes *Avr*) aos respectivos genes de resistência. Como a resistência do cafeeiro à ferrugem é condicionada por pelo menos nove genes dominantes (S_H 1 – S_H9) (Rodrigues Jr *et al.*, 1975; Bettencourt & Rodrigues Jr, 1988), é possível inferir a existência de pelo menos nove genes de avirulência em *H. vastatrix.* Como já observado em diferentes patossistemas, mutações nos genes *Avr* permitem que os patógenos suplantem a resistência conferida por um gene de referência específico (Stergiopoulos & de Wit, 2009).

As ferrugens são fungos parasitas obrigatórios que produzem haustórios, estruturas especializadas utilizadas na absorção de nutrientes a partir das células de seus hospedeiros (Voegele & Mendgen, 2003; Dodds et al., 2009). Essas estruturas formadas dentro das células vegetais são separadas de seu citoplasma pela membrana plasmática da célula hospedeira. Além de facilitar a absorção de nutrientes, os haustórios induzem modificações estruturais na célula infectada como, por exemplo, o rearranjo do citoesqueleto, a migração do núcleo e a condensação da cromatina e tem importância também na supressão das respostas de defesa e modificação do metabolismo do hospedeiro (Heath, 1997; Mendgen et al., 2002). A resposta de resistência às ferrugens normalmente é observada após a formação dos haustórios indicando que os genes Avr desses patógenos são expressos nessa estrutura (Dodds et al., 2009). De fato, vários genes de avirulência de Melampsora lini clonados recentemente são expressos no haustório e codificam proteínas que são secretadas na matrix extra-haustorial e translocadas para dentro da célula do hospedeiro onde interagem diretamente com as proteínas codificadas pelos genes R (Dodds et al., 2004; Catanzariti et al., 2006; Panstruga & Dodds, 2009). Um cenário similar pode ser vislumbrado para a ferrugem do cafeeiro, uma vez que estudos citológicos demonstram que a resistência do cafeeiro a H. vastatrix é, em geral, do

tipo pós-haustorial, sendo expressa pela morte rápida e localizada de células da planta em contato e próximo aos haustórios, a denominada reação de hipersensibilidade, que restringe o desenvolvimento do patógeno (Silva *et al.*, 2006). Todavia, ainda são inexistentes estudos visando identificar e caracterizar genes de avirulência em *H. vastatrix.* A disponibilidade desses genes permitiria entender os mecanismos de mutação envolvidos na suplantação da resistência assim como forneceria subsídios para o desenvolvimento de variedades de cafeeiro com resistência mais durável.

Com esse objetivo, efetuou-se nesse trabalho a identificação de genes de *H. vastatrix* que codificam proteínas secretadas durante a sua interação compatível com o cafeeiro por meio da construção e análise de um banco de etiquetas de sequências expressas na interação (ESTs, *expressed sequence tags*) utilizando distintas ferramentas de bioinfómatica. Foram identificados 46 genes que codificam proteínas pressupostamente secretadas por *H. vastatrix*. Cinco desses genes foram completamente sequenciados e a secreção das proteínas preditas de quatro genes foi confirmada em levedura utilizando o sistema *Yeast Secretion Trap.*

2. REVISÃO DE LITERATURA

2.1 – Ferrugem do cafeeiro: importância, sintomas e controle

A ferrugem do cafeeiro foi constatada pela primeira vez em 1861, em cafeeiros silvestres, na região do lago Victoria-Nyanza, no Quênia, continente africano. Já em 1869 citava-se sua gravidade na cafeicultura do Ceilão (atualmente Sry-Lanka), país que, por efeito da ferrugem, deixou de ser produtor de café e passou a cultivar chá (McCook, 2006).

No Brasil a primeira observação da ferrugem do cafeeiro foi feita em 17 de janeiro de 1970, no município de Aurelino Leal, Sul da Bahia, pelo fitopatologista Arnaldo Medeiros, quando examinava cafeeiros junto as plantações de cacau (Matiello & Almeida, 2006). A introdução do patógeno possivelmente ocorreu pelo transporte de esporos por correntes aéreas de altas altitudes que atravessam o oceano, vindas da África (Matiello & Almeida, 2006; McCook, 2006).

Depois de ter alcançado o Brasil, a ferrugem do cafeeiro se espalhou rapidamente para outros países produtores de café do continente americano: Argentina e Paraguai em 1972, Nicarágua em 1976, Bolívia em 1978, El Salvador e Peru em 1979, Guatemala e Honduras em 1980, Equador e México em 1981, Costa Rica e Colômbia em 1983 e Venezuela em 1984 (Rodrigues Jr, 1990). E hoje está mundialmente presente em todos os países produtores de café, exceto Havaí e Austrália (van der Vossen, 2005).

Os primeiros sintomas da doença são manchas cloróticas translúcidas com 1-3 mm de diâmetro, observadas na face abaxial do limbo foliar. Em poucos dias, essas manchas crescem, atingindo 1-2 cm de diâmetro (Rodrigues Jr, 1990; Godoy *et al.*,1997). Na face inferior, desenvolvem-se massas pulverulentas de coloração amarelo-alaranjado, formadas por uredósporos do patógeno, conhecidas como pústulas. Quando coalescem podem cobrir grande extensão do limbo (Rodrigues Jr, 1990; Godoy *et al.*,1997). Na face adaxial da folha, aparecem áreas descoloridas, de tonalidade amarelada, que correspondem às regiões infectadas na face inferior. Com o tempo, as lesões aumentam de tamanho, apresentando no seu centro uma área necrótica onde a esporulação diminui. Em estádios avançados de ataque, a maior parte da área afetada morre e a produção de esporos continua somente ao redor da pústula (Rodrigues Jr, 1990; Godoy *et al.*,1997). Ocasionalmente, o fungo

pode atacar a extremidade do ramo em desenvolvimento e frutos verdes. Na plantação, o sintoma mais notável é a desfolha das plantas, que pode provocar o retardamento do desenvolvimento de plantas jovens, ou sinais de depalperação de plantas velhas, com comprometimento da produção (Figura 1). A desfolha ocorrida antes do florescimento interfere no desenvolvimento dos botões florais e na frutificação. Por outro lado, a perda das folhas durante o desenvolvimento dos frutos leva à formação de grãos anormais, afetando sensivelmente a produção (Godoy *et al.*, 1997).

O controle da ferrugem envolve principalmente o princípio da proteção do hospedeiro com fungicida protetor e o princípio da quimioterapia, isto é, aplicação de fungicida sistêmico (Zambolim *et al.,* 2007). No princípio da proteção, fungicidas protetores (calda bordalesa, casa Viçosa, oxicloreto, óxidos e hidróxidos de cobre) são aplicaddos preventivamente antes do surgimento da doença (Zambolim *et al.,* 2007).

Os fungicidas sistêmicos mais empregados no controle da ferrugem são os do grupo dos triazóis isoladamente ou em mistura preparadas com estrobilurinas (Zambolim *et al.*, 2007). Porém, mesmo com o crescente uso desses fungicidas, a utilização de fungicidas cúpricos alternadamente ou como complementação de contole torna-se muito importante, não apenas por reduzir a intensidade de ataque da doença, mas também por favorecer a nutrição, pelo fornecimento do íon cobre à planta e reduzir a pressão de seleção desfavorecendo o surgimento de novas raças de *H. vastatrix* (Zambolim *et al.*, 2007).

Apesar da eficiência dos fungicidas no controle da doença, o uso de cultivares resistentes constitui a medida mais importante de controle, por ser efetiva e econômica, além de preservar o ambiente (Zambolim et al., 1999). Um marco importante na obtenção de variedades resistentes à H. vastatrix deu-se em finais dos anos 50 quando, em Timor-Leste, foram descobertos alguns genótipos de Híbridos de Timor (HDT) (híbrido natural entre C. arabica e C. canephora) resistente a todas as raças conhecidas de *H. vastatrix* (Diniz, 2010). Muitas são as variedades de cafeeiro resistentes a ferrugem, atualmente cultivadas em diferentes países cafeicultores provenientes de cafeeiros e populações, nomeadamente derivados de HDT, criadas e estudadas no Centro de Investigação da Ferrugem do Cafeeiro -CIFC, destacando-se as populações vulgarmente designadas por Catimor (cv Caturra x HDT CIFC 832/1) e Sarchimor (cv Villa Sarchi x HDT CIFC 832/2) que deram origem a várias cultivares (Diniz, 2010). A partir de Catimor foram criadas as seguintes cultivares: Oeiras MG 6851 e Katipó (Brasil), Cauvery (Índia), Costa Rica 95 (Costa Rica), IHCAFÉ 90 e Lempira (Honduras), Oroazteca (México), Catisic (El Salvador) e MIDA 96 (Panamá). Da população Sarchimor originaram-se as cultivares Lapar 59, Obatã, Tupi e IPR 98 (Brasil) e Chandragiri (Índia). Referem-se ainda a variedade Colombia derivada da população Caturra x CIFC HDT 1343, assim como as cultivares brasileiras Araponga MG1, Catiguá MG1, MG2, MG3, Paraíso MG H419-1, Pau Brasil MG1 e Sacramento MG1, descendentes da população (Catuaí x HDT CIFC 2570) e IBC-Palma 1 e IBC Palma 2 da população Catuaí x Catimor (Bettencourt et al., 1988; Silva et al., 2006; Carvalho, 2008; Várzea et al., 2008; Diniz, 2010). Porém, o contínuo surgimento de raças fisiológicas do patógeno tem suplantada a resistência de algumas cultivares antes considerados resistentes,

dessa forma a durabilidade da resistência das cultivares atuais é difícil de ser prevista (Várzea *et al.,* 2002).

2.2 – Hemileia vastatrix: mecanismo de patogênese e variabilidade

O agente etiológico da ferrugem do cafeeiro, *Hemileia vastatrix* Berkeley & Broome, é um fungo biotrófico pertencente ao filo Basidiomycota, classe Pucciniomycetes, ordem Pucciniales, família Chaconiaceae (Kirk *et al.*, 2008). O gênero foi descrito em 1869 por Berkeley e Broom, baseando-se na característica típica dos teliósporos e dos uredósporos, os quais apresentam a parede lisa do lado interno ao soro e verrugosa do lado externo (Rodrigues Jr, 1990).

Hemileia vastatrix produz os estágios de urédia, télia e basídia, sendo classificada como microcíclica, por não possuir as fases de pícnio e écio conhecidas. Na urédia são produzidos os uredósporos, esporos assexuais, dicarióticos, que são dispersos pelo homem, água e, principalmente, pelo vento, sendo responsáveis pela multiplicação da doença no campo (Diniz, 2010).

Na presença de água líquida e temperaturas entre 15°- 30°C, os uredósporos (Sp) depositados na superfície abaxial da folha do hospedeiro, germinam produzindo um tubo germinativo que desenvolve sobre a folha até encontrar um estômato, onde diferencia um apressório (Ap) (Figura 2). O apressório diferencia uma hifa primária (PHy) que penetra através do estômato e forma células-mãe do haustório (CMH) que produzem haustório primário (PH) nas células subsidiárias ou nas células adjacentes do estômato, antes da penetração do mesófilo (Figura 2). A formação dessas estruturas nas células epidermais parece ser única entre as ferrugens (Ramiro et al., 2009). Continuando o seu crescimento, a hifa primária atinge o mesófilo onde desenvolve uma vesícula típica em forma de âncora (An) na câmara subestomática. De cada ponta dos ramos da âncora, novas CMH são formadas a partir das quais haustórios secundários (SH) são produzidos nas células do mesófilo, dando início à fase biotrófica, cerca de 36 horas após a inoculação. Em cafeeiros suscetíveis, a colonização do mesófilo caracteriza-se por numerosas hifas intercelulares, com muitos haustórios, que precedendo a fase reprodutiva, formam um aglomerado na câmara subestomática, dando origem a um conjunto de pedicelos que saem pelos estômatos, na face abaxial da folha (Figura 1). No ápice desses pedicelos são

formados os uredósporos, que permanecem unidos, constituindo uma pústula (Silva *et al.*, 2006). Em cultivares resistentes, o crescimento fúngico cessa após a formação dos haustórios secundários dentro das células do mesófilo (Ramiro *et al.*, 2009).

Figura 2: Diagrama ilustrando a fase inicial do desenvolvimento de *Hemileia vastatrix* nos tecidos do cafeeiro. Depois da germinação dos uredósporos (Sp) e formação de apressórios (Ap), o patógeno diferencia uma hifa intercelular de infecção primária (PHy), que forma as células-mãe do haustório (CMH), a partir do qual, haustórios primários (PH) são formados dentro das células subsidiárias (S) e adjacentes (A) dos estômatos. Quando a hifa primária chega no mesófilo (M) ocorre o desenvolvimento de uma vesícula típica em forma de âncora (An) na câmara subestomática. De cada ponta dos ramos da âncora, novas HMC são formadas a partir das quais haustórios secundários (SH) são produzidos nas células do mesófilo. E: epiderme; G: células-guarda. Adaptado de Ramiro *et al.*, (2009).

Os teliósporos são esporos unicelulares, dicarióticos, de formato ligeiramente globoso com uma saliência no ápice (Godoy *et al.*,1997). Sua formação é estimulada por baixas temperaturas e baixa precipitação (Fernandes *et al.*, 2009). Estes

esporos são capazes de germinar *in situ*, sem ocorrência de um período de dormência, produzindo um pró-micélio sobre o qual são produzidos quatro basidiósporos monocarióticos (Fernandes *et al.*, 2009). Os basidiósporos, apesar de também germinarem *in situ*, ainda não foi observado sua infecção em folhas do cafeeiro, sugerindo que *H. vastatrix* seja uma ferrugem heteróica (Diniz, 2010). No entanto, o fato de *H. vastatrix* não ser relacionada com qualquer grupo de ferrugens heteróicas e o insucesso nas tentativas de identificar um hospedeiro alternativo, sugerem que esta ferrugem possa ser autóica (Rodrigues Jr., 1980; Rodrigues Jr. *et al.*, 2000 citados por Diniz,2010).

		Genes do Hospedeiro																	
<i>vastatrix</i> sil	duzidos	S _{H 5}	S _{H 6,?}	S _{H 1}	S _{H 1,2,3,4,5}	S _{H 2,3,4,5}	S _{H 6}	S _{H 1,4}	S _{H 1,5}	S _{H 2,4,5}	S _{H 2,5}	S _{H 3,5}	S _{H 4,5}	S H 1,2,5	S _{H 1,3,5}	S _{H 1,4,5}	S _{H ?}	S _{H 5,6,9}	S н 5,6,7,9
e <i>H.</i> Bra	a de						Coff	<i>ea</i> sp	p. e l	Híbrio	dos lı	ntere	speci	ficos					
Raças fisiológicas d	Genes de virulênci	Bourbon	832/1 - H. Timor	128/2 - Dilla & Alghe	HW 17/12	H 147/1	1343/269 - H. Timor	134/4 - S.12 Kaffa	87/1 - Geisha	H 152/3	32/1 - DK 1/5	33/1 - S. 288 - 23	110/5 - S. 4 Agaro	1006/10 - KP 532	H 153/2	635/3 - S12 Kaffa	644/18 - H. Kawisari	H 419/20	H 420/10
		Е	Α	α	0	Т	R	I	С	Y	D	G	J	L	Z	W	Μ	3	1
I	V _{2,5}	S									S								
П	V 5	S																	
Ш	V _{1,5}	S		S					S										
VII	V _{3,5}	S										S							
Х	V _{1,4,5}	S		S				S	S				S			S			
XIII	V _{5,?}	S															S		
XV	V 4,5	S											S						
XVI	V 1,2,3,4,5	S		S	S	S		S	S	S	S	S	S	S	S	S			
XVII	V _{1,2,5}	S		S					S		S			S					
XXI	V ?																		
XXII	V _{5,6}	S					S												
XXIII	V _{1,2,4,5}	S		S	S			S	S	S	S		S	S		S			
XXIV	V _{2,4,5}	S								S	S		S						
XXV ou XXXI	V _{2,5,6} OU V _{2,5,6,9}	S					S				S								
XXXVII	V 2,5,6,7,9	S					S				S							S	S

Quadro 1: Raças fisiológicas de *Hemileia vastatrix* Berk et Br identificadas no Brasil, com seus respectivos genes de virulência e resistência. Adaptado de Capucho (2008).

S – Suscetível. Os espaços em branco correspondem a reação de resistência do hospedeiro.

Acredita-se que a principal causa da variabilidade genética de *H. vastatrix* seja a mutação genética, uma vez que é desconhecido o seu hospedeiro alternativo (Diniz, 2010). Assim sendo, a evolução de novas raças fisiológicas de *H. vastatrix*

pode estar relacionado com a pressão exercida pela seleção de genes de resistência do hospedeiro (Várzea *et al.*, 2002).

Análises genéticas da resistência no hospedeiro e da virulência no patógeno demonstraram que o fenótipo de resistência é dependente da presença de genes R dominantes no hospedeiro e correspondentes genes Avr dominantes no patógeno, ou seja, segue a teoria gene-a-gene. Sendo que a resistência das plantas de café é condicionada por pelo menos nove genes dominantes de efeito principal (S_H1- S_H9), sozinhos ou associados, pela mesma teoria, é possível inferir nove genes de virulência (v1 – v9) em *H. vastatrix* (Rodrigues Jr *et al.*, 1975; Bettencourt & Rodrigues Jr, 1988). Todavia, ainda são inexistentes estudos visando identificar e caracterizar genes de avirulência em *H. vastatrix*. Como já observado em diferentes patossistemas, mutações nos genes Avr permitem que os patógenos suplantem a resistência conferida por um gene de resistência específico (Stergiopoulos & de Wit, 2009). Logo, a disponibilidade desses genes permitiria entender os mecanismos de mutação envolvidos na suplantação da resistência assim como forneceria subsídios para o desenvolvimento de variedades de cafeeiro com resistência mais durável.

2.3 – Proteínas efetoras de fungos

Uma característica comum de patógenos de plantas é a capacidade de produzir proteínas e outras moléculas que melhoram o seu potencial de colonização, sobrevivência e reprodução em plantas. Essas moléculas, também denominadas efetores, modificam processos nas células do hospedeiro e, às vezes, até as suas estruturas (Hogenhout et al., 2009). Uma função comum dos efetores de patógenos é facilitar a infecção (fatores de virulência ou toxinas) ou interferir na resposta de defesa do hospedeiro. Quando a presença dos efetores ou sua atividades é detectada por proteínas de resistência (R) do hospedeiro, ocorre 0 desencadeamento das respotas de defesa (Yin & Hulbert, 2010). Neste caso, as proteínas efetoras são denominadas proteínas de avirulência.

As ferrugens são fungos parasitas obrigatórios que produzem haustórios, estruturas especializadas utilizadas na absorção de nutrientes a partir das células de seus hospedeiros (Voegele & Mendgen, 2003; Dodds *et al.*, 2009). O haustório é uma hifa altamente especializada que penetra na parede celular vegetal e cresce dentro da célula do hospedeiro. Esta estrutura é circundada por uma membrana

plasmática e parede celular. Todavia, ela não é formada diretamente no citoplasma da célula vegetal. Ao invés disso, a membrana plasmática da célula do hospedeiro invagina e forma uma membrana extra-haustorial ao redor do haustório. Na interface entre a parede celular do haustório e a membrana extra-haustorial é formada uma camada de substância semelhante a um gel, rica em carboidratos, denominada matriz extra-haustorial (Catanzariti *et al.*, 2007). Assim, uma substância produzida pelo haustório deve atravessar sucessivamente a membrana plasmática do haustório, a matriz extra-haustorial e a membrana plasmática do hospedeiro, para ter acesso ao citoplasma vegetal (Figura 3).

Figura 3 – A interface hospedeiro-haustório. Esquema de um haustório dentro de uma célula hospedeira mostrando a membrana extra-haustorial e a matriz extra-haustorial. Proteínas efetoras são secretadas a partir do haustório para a matriz extra-haustorial. Um subconjunto dessas proteínas são transportados para dentro da célula hospedeira, atravessando diretamente a membrana extra-haustorial (1) ou através de vesículas do sistema de endomembranas do hospedeiro (2). Uma vez dentro do citoplasma do hospedeiro, os efetores podem alterar seu metabolismo e vias de defesa. Os efetores que são reconhecidos por produtos de genes de resistência (R) são denominados proteínas de avirulência (Avr) e desencadeam respostas de defesa. Outros efetores podem ser direcionados para organelas do hospedeiro, como o núcleo, onde podem alterar a transcrição. Os efetores secretados a partir das hifas podem também entrar nas células do hospedeiro através de um mecanismo ainda desconhecido (3) e, quando reconhecidos por uma proteínas de resistência, podem desencadear respostas de defesa. Adaptado de Catanzariti *et al.*, (2007).

Estudos recentes demonstraram que os haustórios desempenham um papel fundamental no fornecimento de proteínas efetoras fúngicas, incluindo proteínas de avirulência, na célula do hospedeiro infectado (O' Connell & Panstruga, 2006; Catanzariti et al., 2007). Por meio da caracterização de clones de cDNA sintetizados a partir de mRNA isolado de haustórios de Melampsora lini (ferrugem do linho) e análises de bioinformática, Catanzariti et al. (2006) identificaram 21 genes expressos em haustório que codificam proteínas secretadas, dentre eles os genes de avirulência Avr567 AvrM, AvrP123 e AvrP4 que são expressos no haustório e codificam pequenas proteínas secretadas. A proteína Avr123 possui similaridade com inibidores de serinoproteases do tipo Kazal, sugerindo um possível papel dessa proteína na patogênese de *M. lini*, por meio da inibição de proteases do hospedeiro. Todas as quatro proteínas são capazes de induzir a morte celular quando expressas intracelularmente, sugerindo que elas são translocadas para dentro das células vegetais onde interagem com as proteínas codificadas pelos genes de resistência correspondentes (Catanzariti et al., 2006). A interação direta da proteína AvrL567 com as proteínas codificadas pelos genes L5, L6 e L7 foi demonstrada por Dodds et al. (2006). Esses resultados são consistentes com a teoria gene-a-gene de Flor, desenvolvida com base em estudos da genética da interação Melampsora lini – linho (Flor, 1956), que demonstraram que o fenótipo de resistência é dependente da interação de genes de resistência dominantes no hospedeiro com genes de avirulência dominantes no patógeno. A expressão dos genes identificados no haustório também corrobora os resultados de estudos citológicos que demonstraram que a resistência de plantas às ferrugens envolve a elicitação da reação de hipersensibilidade após a formação do haustório (Heath, 1997; Ramiro et al., 2009).

Uma característica comum a proteínas efetoras de fungos filamentosos é a presença de vários resíduos de cisteína que podem estar envolvidos na formação de pontes dissulfeto que contribuem para a estabilidade da proteína em meio rico em proteases (De Wit *et al.*, 2009; Stergiopoulos *et al.*, 2009). Pontes dissulfeto entre resíduos de cisteínas são importantes para a estabilidade e atividade das proteínas Avr4 e Avr9 de *C. fulvum* (Stergiopoulos *et al.*, 2009). Entretanto, análises com mutantes em resíduos de cisteínas presentes nas proteínas ECPs do mesmo fungo, sugerem que nem todos os resíduos de cisteínas estão envolvidos na formação de pontes dissulfeto ou são cruciais para a indução de HR em plantas que carregam

genes de resistência que codificam proteínas capazes de reconhecer esses ECPs (Stergiopoulos *et al*, 2009).

Além dos efetores de ferrugens, efetores de oídios, M. oryzae e de F. oxysporum f. sp. lycopersici, oomicetos, bactérias fitopatogênicas e nematóides são também translocados para o citoplasma da célula hospedeira, onde interagem com proteínas R localizadas no citoplasma ou no núcleo (Jia et al., 2000; Dodds et al., 2006; Catanzariti et al., 2007; Ellis et al., 2007; Shen et al. 2007; Houterman et al., 2009). Em bactérias fitopatogênicas, a transferência de proteínas efetoras para o citoplasma da célula vegetal é efetuada pelo sistema de secreção tipo III (Block et al., 2008) enquanto efetores de nematóides são introduzidos na célula do hospedeiro via estilete (Davis et al., 2008). O mecanismo de transferência das proteínas efetoras de fungos e oomicetos ainda não está totalmente esclarecido. Várias proteínas efetoras de oomicetos possuem um motivo estrutural N-terminal RXLR-EER conservado que é similar ao motivo RXLXE/Q presente em proteínas de Plasmodium falciparum, agente causal da malária, que são translocadas para dentro das células dos eritrócitos do hospedeiro. O motivo RXLR-EER parece funcionar como um sinal de translocação de proteínas efetoras para dentro da célula do hospedeiro, facilitando a translocação da proteína através da membrana plasmática da planta ou estimulando a sua endocitose na interfase haustório - célula do hospedeiro (Dodds et al., 2009). Motivos estruturais conservados ainda não foram identificados em fungos filamentosos. Assim, é possível que diferentes mecanismos de transportes estejam envolvidos na translocação de efetores de fungos filamentosos e oomicetos. Alternativamente, é possível que uma evolução convergente tenha levado a uma segmentação na rota de transporte do hospedeiro pelos dois grupos de fitopatógenos sem deixar o relacionamento entre as sequências claramente reconhecível (Dodds et al., 2009).

2.4 – Identificação de genes efetores

Estratégias bioquímicas, genéticas e de bioinformática, geralmente em combinação, tem sido aplicada para a identificação de proteínas secretadas por fungos filamentosos. Tradicionalmente, proteínas secretadas foram identificadas por purificação bioquímica e seguida por análise genética.

A identificação de proteínas secretadas foi facilitada pelo fato de que em oomicetos como em outros eucariotos, a maioria das proteínas secretadas são exportadas pela via secretória geral, que reconhece sequências curtas de aminoácidos, localizadas na região N-terminal, conhecidas como peptídeos sinais (Torto *et al.*, 2003). Esses peptídeos sinais podem ser identificados por ferramentas computacionais, particularmente o programa SignalP, com um alto grau de acurácia (Nielsen *et al.*, 1999; Menne *et al.*, 2000; Schneider & Fechner, 2004). Assim, com o acúmulo de sequências genômicas e de cDNA, genes que pressupostamente codificam proteínas secretadas podem ser rapidamente identificados utilizando-se ferramentas de bioinformática.

A grande maioria de efetores de patógenos filamentosos identificados até hoje carregam peptídeo sinal que pode ser predito usando SignalP (Kamoun, 2007). Essas predições tem sido validadas de forma convincente utilizando ensaios de proteômica (Torto *et al.*, 2003) e de secreção em levedura (Lee *et al.*, 2006). No entanto, nem todas proteínas efetoras secretadas podem ser identificadas pelo algoritimo SignalP, pois é possível que algumas proteínas efetores não apresentem peptídeo sinal, sendo secretados por rotas alternativas de secreção,

Outro método promissor para identificação de proteínas fúngicas secretadas com base na presença de sequências codificadoras de peptídeo sinal é o sistema de secreção em leveduras desenvolvido por Jacobs (1997) (sistema YST, yeast secretion trap). Este sistema baseia-se em um vetor de expressão que carrega um gene de invertase (SUC2) em que o códon de iniciação (ATG) e a região codificadora para o peptídeo sinal foram removidos. A invertase codificada pelo gene SUC2 é uma sacarase extracelular que catalisa a quebra de sacarose em frutose e glicose. Neste vetor, a transcrição da invertase é mediada pelo promotor ADH, do gene que codifica a álcool desidrogenase. Para que o gene da invertase seja transcrito, uma sequência (cDNA) contendo um códon iniciador e a região codificadora para o peptídeo sinal deve ser clonada entre o promotor ADH e o gene SUC2. O plasmídeo recombinante contendo a sequência promotor-cDNA-SUC2 é transformado em uma levedura SUC2⁻ e plaqueado em meio contendo apenas sacarose como fonte de carbono. Como leveduras Saccharomyces cerevisiae suc não são capazes de utilizar sacarose como fonte de carbono, apenas transformantes que possuírem sequências de cDNA contendo sequências codificadoras de um

peptídeo sinal fusionadas *in frame* com o gene da invertase permitirão a secreção da invertase e assim a quebra da sacarose em frutose e glicose. Consequentemente, estes transformantes serão os únicos capazes de crescer em meio contendo apenas sacarose como única fonte de carbono.

Utilizando esse sistema no estudo da interação *S. lycopersicum -Phytophthora infestans*, Lee *et al.* (2006) identificaram 45 cDNAs que codificam proteínas secretadas na interação, sendo 23 deles (51%) de origem fúngica. Foram identificados genes de *P. infestans* com alta similaridade com genes que codificam proteínas conhecidamente secretadas, como o *PiE1*, que foi similar a um efetor envolvido na resposta de hipersensibilidade, *PiE17*, que codifica uma metalopeptidase, e *PiE18* a um gene que codifica uma cutinase, as quais fazem parte da classe de genes que codificam enzimas hidrolíticas comumente secretadas por fitopatógenos e determinantes da patogenicidade. Dos genes de origem vegetal, aproximadamente 50% codificam proteínas com similaridade a proteínas envolvidas na resposta de defesa da planta, incluindo proteínas PR (*Pathogenesis-related proteins*).

Link & Voegele (2008) utilizando o sistema YST identificaram 62 genes do fungo *Uromyces fabae*, agente etiológico da ferrugem de *Vicia faba*, que codificam proteínas secretadas pelo haustório e 42 genes que codificam proteínas secretadas em esporos germinados. Apenas quatro genes foram idênticos em ambas as bibliotecas, indicando uma forte regulação fase-específica na secreção de proteínas em ferrugens. Foram identificados 39 cDNAs que codificam proteínas com similaridade a proteínas previamente identificadas, 28 dos quais codificam proteínas similares identificadas somente em fungos da ordem Uredinales, indicando possíveis papéis desses genes na virulência e especificidade exclusiva das ferrugens.

3. MATERIAL E MÉTODOS

3.1 – Obtenção do inóculo e material infectado para a construção da biblioteca de cDNA

O isolado de *Hemileia vastatrix* utilizado neste estudo foi obtido de folhas de cafeeiro naturalmente infectadas coletadas em 2008, no Campo Experimental do Viveiro de Café da Universidade Federal de Viçosa, em Viçosa-MG. Posteriormente, foi obtido um isolado monopustular do fungo, denominado HV-01, a partir do isolamento de uredósporos obtidos de uma única pústula que foram inoculados em uma muda da cultivar Catuaí Vermelho IAC 44. Por meio da inoculação na série diferenciadora do CIFC, isolado foi classificado como pertencente à raça II. Este inóculo foi multiplicado por sucessivas coletas dos uredósporos e inoculações até se obter quantidade suficiente de esporos para que o trabalho fosse realizado.

A viabilidade dos uredósporos foi preservada colocando-se os esporos em tubos de 1,5 ml e estes dentro de Becker, colocados em dessecador contendo solução de acido sulfúrico a 32,6%, para manter a umidade relativa do ar em 50%. Os dessecadores foram armazenados a 4ºC.

Com a finalidade de isolar genes de H. vastatrix que codificam proteínas secretadas durante sua interação com C. arabica, mudas de cafeeiro foram inoculadas de acordo com Maia (2009), na qual, com auxílio de um pincel, uredósporos de H. vastatrix foram depositados nas faces abaxiais de folhas jovens e completamente desenvolvidas de mudas da cultivar Catuaí Vermelho IAC 44. Em seguida, aspergiu-se água destilada sobre as folhas até atingir um leve molhamento superficial. Após a inoculação, as plantas foram cobertas com saco plástico e transferidas para câmara de nevoeiro a 22ºC, na ausência de luz, por 48 horas. Após este período, os uredósporos que permaneceram na face abaxial das folhas foram removidos usando algodão, para evitar a colonização de fungos hiperparasitas. As plantas foram levadas para câmara de crescimento a 22ºC e fotoperíodo de 12 horas. Folhas com sintomas de infecção e antes do início da esporulação (aproximadamente 12 dias após a inoculação) foram coletadas, congeladas em nitrogênio líquido e armazenadas em ultrafreezer até o processamento de acordo com a metodologia para a construção da biblioteca de cDNA descrita a seguir.

3.2 – Construção e sequenciamento da biblioteca de cDNA

O tecido vegetal infectado foi macerado em nitrogênio líquido, em almofariz com auxílio de pistilo e a extração de RNA total foi efetuada conforme instruções do kit Plant RNA isolation Reagent (Invitrogen). O mRNA foi purificado a partir do RNA total purificado utilizando o NucleoTrap® mRNA Midi Kit, conforme instruções do fabricante (Macherey-Magel). A biblioteca de cDNA foi construída conforme instruções e reagentes do kit SMART cDNA library construction kit (Clontech), a partir de 0,5 ug de RNA poliadenilado. Os cDNAs resultantes foram clonados no vetor pDNR-LIB (Clontech) e transformados em Escherichia coli estirpe EC-100 (Epicentre, Madison, WI, EUA) por eletroporação. Os clones recombinantes foram plaqueados em meio LB contendo cloranfenicol (30 µg.ml⁻¹). Após incubação a 37°C por 16 horas, as colônias foram coletadas e transferidas, aleatoriamente, para placas de 96 cavidades contendo meio Freeze Media (Bacto Tryptone 1%(p/v), Bacto Yeast Extract 0.5%(p/v), NaCl 1%(p/v), KH₂PO₄ 13mM, K₂HPO₄.3H₂O 36mM, Sodium Citrate 1,7mM, $(NH_4)_2SO_4$ 6,8mM e Glycerol 4,4% (p/v)) e cloranfenicol (30 µg.ml⁻¹), que foram incubadas a 37°C por 16 h e depois estocadas a -80°C. Essa biblioteca foi denominada CAHV, sendo a sigla CA derivada de Coffea arabica e HV de Hemileia vastatrix.

A extração do DNA plasmidial foi realizada repicando-se as colônias para placas de microcultura contendo 1 ml de meio *Circle Grow* acrescido de 30 µg.ml⁻¹ de cloranfenicol. As placas foram incubadas a 37°C por 16 horas a 280 rpm. Após esse período, as mesmas foram centrifugadas a 2500 rpm por 10 minutos e descartado o sobrenadante. As células foram ressuspendidas em 240 µl de solução G.E.T pH 7,4 (EDTA 0,5 M pH 8,0, Tris-HCl 1 M, Glicose 20%) e centrifugadas a 3000 rpm por 7 minutos. O sobrenadante foi descartado e as células ressuspendidas em 80 µl de solução G.E.T contendo RNase (150 mg.ml⁻¹) e agitadas por 2 minutos. Uma alíquota de 60 µl da suspensão de células foi transferida para placas de polipropileno de fundo redondo e a seguir foi adicionado a cada poço 80 µl de NaOH 0,2 N e SDS 1% (1:1). As placas foram seladas, invertidas 4-6 vezes e incubadas a temperatura ambiente por 5 minutos. Em seguida, centrifugou-se as placas a 3700 rpm por 2 minutos, e fez-se a adição de 80 µl de KOAc 3 M pH 4,8, homogeneizou-se por inversão e incubou-se no gelo por 10 minutos. As placas foram então incubadas em estufa a 90°C por 30 minutos, colocadas novamente no gelo por 10

minutos e centrifugadas a 3700 rpm por 9 minutos. Uma alíquota de 100 µl do sobrenadante foi filtrada em uma placa Millipore (MAGV N22) por meio de centrifugação (3000 rpm por 6 minutos). Por fim, foi adicionado 100 µl de isopropanol, homogeneizado por inversão e centrifugado a 3700 rpm por 45 minutos. O sobrenadante foi descartado e o DNA lavado com etanol 70% centrifugado a 3700 rpm por 5 minutos e ressuspendido em água milli-Q. A quantidade e qualidade do DNA extraído foram analisadas por eletroforese em gel de agarose 1%, seguido de coloração com brometo de etídeo.

As reações de sequenciamento foram realizadas com o kit DYEnamic[™] ET Dye Terminators (GE Healthcare, Freiburg, Germany). Foram utilizados nestas reações 100 a 150 ng de DNA plasmidial, 0,5 µM do oligonucleotídeo M13F ou M13R, 2,0 µl de DYEnamicTM ET Dye Terminator Sequencing Pre-mix em um volume final de 5 µl. As condições da PCR foram: 95°C por 10 segundos, 50°C por 5 segundos e 60°C por 2 minutos repetidas 35 vezes. Em seguida, o DNA foi precipitado adicionando-se 27,5 µl de etanol absoluto e acetato de amônio para uma concentração final de 0,75 M. Após 10 minutos a temperatura ambiente, as reações foram centrifugadas por 45 minutos a 3700 rpm. O DNA foi então lavado com 100 µl de etanol 70%, centrifugado a 3700 por 10 minutos e deixado secar por 10 minutos. Após a precipitação, o DNA foi ressuspenso em 5 µl de *Loading Buffer* (GE Healthcare). A leitura das reações foi realizada em sequenciador automático MegaBACE[™] 1000 de 96 capilares (GE Healthcare) no Laboratório de Genômica, do Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), da Universidade Federal de Viçosa -UFV.

3.3 – Análises de bioinformática

A qualidade das sequências foi verificada por meio do pacote Phred/Cross_match/Phrap (www.phrap.org), instalado no Laboratório de Genômica – BIOAGRO-UFV, selecionando-se as sequências com qualidade phred >20. Após a remoção de sequências do vetor pelo programa *Cross_match* (www.phrap.org), as sequências obtidas foram alinhadas pelo programa CAP3 (http://bio.ifom-firc.it/ASSEMBLY/assemble.html). Após a formação dos contíguos e singletos, as sequências únicas foram comparadas a 254439 ESTs (Etiquetas de Sequências Expressas) de *Coffea* spp. depositadas no GenBank do National Center for

Biotechnology Information - NCBI (<u>http://www.nvbi.nlm.nih.gov</u>) por meio do algoritmo BlastN. O resultado do BlastN foi utilizado para selecionar as sequências que não apresentaram identidades com ESTs de *Coffea* spp. depositadas no NCBI. Apenas *hits* com o valor E menor que 10⁻³ foram considerados.

Os contíguos e os singletos que não possuíram identidades com os ESTs de *Coffea* spp. foram comparados com proteínas não redundantes depositadas no GenBank/NCBI por meio do algoritmo BlastX. O resultado do BlastX foi utilizado para triar os ESTs quanto a origem vegetal ou fúngica, além de permitir uma inferência sobre a função. Apenas *hits* com o valor E menor que 10⁻³ foram selecionados.

A predição das sequências abertas de leitura (ORFs) para os contíguos e singletos *NO HIT* foi realizada através de um *script* Perl (*Pratical extraction and report language*) que primeiro gera um arquivo no formato Fasta contendo a tradução de cada sequência nas três possíveis fases de leitura positivas, com a linha descritora da sequência original adicionada da letra F seguida pelo número do quadro de leitura correspondente, 1, 2 ou 3 (>nome_da_sequênciaF1). O segundo *script* Perl encontra ORFs com mais de 60 aminoácidos, gerando um arquivo de saída em formato Fasta, com o nome da sequência e um número adicionado ao nome da sequência indicando que ORF se trata dentre as possíveis para um mesmo quadro de leitura (>nome_da_sequênciaF1-1).

As proteínas deduzidas a partir das ORFs obtidas foram comparadas localmente com 20.566 proteínas deduzidas a partir do genoma de Puccinia f. graminis tritici disponível sp. em (http://www.broadinstitute.org/annotation/genome/puccinia_graminis/download/?sp=EATrans criptsGtf&sp=SPG_tritici_V2&sp=S.zip) e 87.121 sequências preditas a partir do genoma de Melampsora larici-populina, disponível em (http://genome.jgipsf.org/Mellp1/download/Mlaricis_populina.allModels.aa.fasta.gz) por meio do algoritmo BlastP, considerando um *e-value* menor que 10⁻³. A seguir as proteínas deduzidas foram submetidas à predição in silico de sequências codificadoras de sinal de celular exportação por meio do programa SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP). As proteínas deduzidas a partir das ORFs foram ainda analisadas pelo programa Phobius (http://phobius.cbr.su.se/) e TMHMM 2.0 Server (http://www.cbs.dtu.dk/services/TMHMM/) para identificar genes que

codificam proteínas com domínio transmembrana e pelo programa TargetP (http://www.cbs.dtu.dk/services/TargetP/) para estimar a localização celular. Os possíveis sítios de formação de pontes dissulfeto foram preditos utilizando o programa DiANNA (http://clavius.bc.edu/~clotelab/DiANNA/). O algoritmo SignalP incorpora um sítio de clivagem e predição de peptídeo sinal baseado em redes neurais artificial (NN) e modelos ocultos de Markov (HMM). TargetP é um servidor de redes neurais que prevê a localização subcelular de proteínas eucarióticas baseado na presença de qualquer pré-sequências N-terminal, ou peptídeo de transporte para cloroplasto (para predições em plantas), predições com alvos mitocondriais ou peptídeos sinais via rota de secreção, enquanto TMHMM usa modelos ocultos de Markov para a predição de hélices transmembranas (Joly *et al.*, 2010).

Seguindo as predições, os arquivos de saídas foram manipulados para selecionar sequências contendo peptídeo sinal utilizando os sequintes critérios: (1) positivo para SignalP-HMM Sprob score, (2) positivo para SignalP-NN Smax e D scores, (3) predição de peptídeo sinal no TargetP, e (4) sem domínio transmembrana. O SignalP-HMM Sprob score foi selecionado por discriminar entre peptídeo sinal N-terminal e sinal de ancoramento N-terminal, enquanto os SignalP-NN Smax e D proporcionam uma predição mais acurada de sinal de exportação celular (Joly *et al.*, 2010).

Os clones correspondentes às sequências que não apresentaram identidade com os ESTs depositados nos bancos de dados e que possuíam a predição de sequências de exportação celular sem presença de domínio transmembrana foram ressequenciados utilizando os oligonucleotídeos *forward* (M13F) e *reverse* (M13R) e reanalisados.

3.4 – Seleção de genes candidatos e amplificação das ORFs a partir do cDNA

Foram selecionados clones de cDNA cujas sequências não apresentaram identidade a sequências dos bancos de DNA utilizados, denominadas de *NO HIT*, e que codificam proteínas com predição de sequências de exportação celular com alta probabilidade para os algoritmos utilizados.

Para amplificação dos clones selecionados foram desenhados oligonucleotídeos iniciadores, manualmente, com inserção de sítio para *Eco*RI no iniciador direto (*Forward*) imediatamente a montante (*upstream*) do códon de

iniciação (ATG), com três dinucleotídeos GC a montante do sítio de *Eco*RI. Para o oligonucletídeo iniciador reverso (*Reverse*) foi inserido um sítio de *NotI* na extremidade 3' da ORF sem o códon de parada e três dinucleotídeos GC a jusante (*downstream*) do sítio.

As ORFs selecionadas foram amplificadas a partir dos clones de cDNA por reação em cadeia da polimerase (PCR), utilizando os oligonucleotídeos iniciadores F e R contendo sítios para *Eco*RI e *Not*I, respectivamente. *O*s amplicons obtidos foram digeridos com as enzimas de restrição *Eco*RI e *Not*I (Invitrogen) e, submetidos a reação de ligação com o vetor pYST-1(Figura 4), previamente digerido com as mesmas endonucleases, utilizando-se a enzima T4 DNA ligase (Promega). Os produtos da reação de ligação foram utilizados para transformação de *Escherichia coli* DH5α, por choque térmico. Os transformantes foram selecionados em meio LB contendo ampicilina 150µg/mI.

Figura 4: Representação esquemática do vetor pYST0-2 (Lee, *et al.*, 2006). O vetor foi utilizado para a clonagem das ORFs selecionadas, amplificadas a partir do cDNA, e comprovação da secreção das proteínas preditadas em levedura.

As clonagens foram confirmadas por PCR de colônia e sequenciamento do DNA plasmidial purificado utilizando-se o Kit *NucleoSpin® Plasmid*, de acordo com as instruções do fabricante (MACHEREY-NAGEL). O DNA plasmidial foi quantificado por eletroforese em gel de agarose a 1%.

As reações de sequenciamento foram realizadas como descrita no tópico 3.2 utilizando os oligonucleotídeo Y5 (sequenciamento da extremidade 5') ou YST-R1 (sequenciamento da extremidade 3'). As sequências obtidas foram então alinhadas com os contíguos utilizados para o desenho dos oligonucleotídeos.

3.5 – Análise da secreção das proteínas codificadas pelos genes selecionadas no sistema YST

A estirpe BY4742, acessoYIL162w (MAT α , SUC2, his3 Δ , leu2 Δ , lys Δ , ura3 Δ) de levedura (Saccharomyces cerevisiae) foi utilizada para expressão das proteínas recombinantes e confirmação da secreção. A transformação foi realizada de acordo com protocolo adaptado de Gietz e Woods (2002): para cada 20 µl de células foram adicionados 50 µl de esperma de salmão (2 µg/µl), 34 µl de água deionizada estéril contendo 1 µg do DNA plasmidial, 240 µl de PEG 3500 (polietilenoglicol) e 36 µl de LiAc (acetato de lítio) 1,0 M. A solução foi incubada por 1 hora a 30 °C em shaker a 160 rpm, sendo homogeneizada em vortex a cada 15 minutos. Cerca de 60 µl da reação de transformação foram plaqueados em placas de Petri contendo o meio YPS sólido (5,0 g/l de extrato de levedura, 10 g/l de peptona, 25 ml/L de sacarose 40 %, 10,0 g/l de ágar) acrescido do antibiótico gentamicina (150µg/ml), que foram incubadas a 30°C por dois dias. A transformação foi também plaqueada em meio SD-Leu sólido (6,7 g/l de Yeast Nitrogen Base Without amino acids, 0,69 g/l de -Leu Dropout Supplement, 50 ml/L de glicose 40 %, 10 g/l de ágar) para análise da eficiência da transformação. Os clones que apresentaram crescimento em meio YPS foram considerados positivos para a secreção.

3.6 – Extração do DNA genômico de *H. vastatrix* e amplificação das ORFs para análise da estrutura genômica dos genes selecionados

O DNA genômico do isolado HV–01 de *H. vastatrix* foi extraído de 30 a 50 mg de uredósporos, segundo Maia (2009). Os uredósporos foram triturados com auxílio de nitrogênio líquido e transferidos para tubo de 1,5 ml, onde foi adicionado tampão de extração (Tris-HCI 200 mM pH8,0, NaCl 250mM, EDTA 50 mM e SDS 2%). A seguir, o tubo foi mantido a 65°C por 30 minutos e, posteriormente, foi adicionado clorofórmio:álcool isoamílico (24:1). Após agitação em vortex e incubação no gelo por 30 minutos, o tubo foi centrifugado a 12.000 rpm por 30 minutos. O sobrenadante foi cuidadosamente transferido para um tubo novo, onde foi adicionado igual volume de isopropanol. O tubo foi novamente centrifugado e o sobrenadante descartado. O *pellet* foi ressuspendido em água miliQ autoclavada, a suspensão foi tratada com fenol:clorofómio:álcool isoamílico (25:24:1) e, após

incubação no gelo por 10 minutos, centrifugada a 12.000 rpm por 30 minutos. O sobrenadante foi transferido para um novo tubo, onde se adicionou 60% do volume de acetado de amônio 7 M. Após incubação no gelo por uma hora, o tubo foi centrifugado a 12.000 rpm. O sobrenadante foi transferido para um novo tubo, e o DNA genômico foi precipitado com isopropanol, lavado com etanol 70% e ressuspendido em TE (Tris-HCl 10 mM ph 8,0 e EDTA 1 mM). Em seguida, foi adicionado RNase 10ng/µl, deixando a suspensão a 37°C por 15 minutos. A qualidade e quantidade do DNA foi avaliada por eletroforese em gel de agarose. O DNA foi diluído para a concentração de 50 ng/µl e armazenado a -20°C até sua utilização.

O conjunto de oligonucleotídeos utilizados para amplificação das ORFs dos cDNAs selecionados descrita no item 3.4 também foram utilizados para a amplificação a partir do DNA genômico do isolado HV-01 de *H. vastatrix* por meio de PCR.

Os amplicons resultantes foram clonados no vetor pGEM-T Easy (Promega) de acordo com as instruções do fabricante e transformados em *Escherichia coli* estirpe DH5α por choque térmico. Os clones recombinantes foram selecionados em meio LB contendo ampicilina (150 mg.ml⁻¹), IPTG (100 mg.ml⁻¹) e X-GAL (20 mg.ml⁻¹) após incubação a 37°C por 16 horas.

As clonagens foram confirmadas por PCR de colônia e sequenciamento do DNA plasmidial purificado utilizando-se o Kit *NucleoSpin® Plasmid*, de acordo com as instruções do fabricante (MACHEREY-NAGEL). O DNA plasmidial foi quantificado por eletroforese em gel de agarose 1%.

As reações de sequenciamento foram realizadas como descrita no tópico 3.2 utilizando os oligonucleotídeo M13F (sequenciamento da extremidade 5') ou M13R (sequenciamento da extremidade 3'). Após remoção da sequência do vetor pelo programa *VecScreen,* as sequências obtidas foram então analisadas pelo programa SIM4 (http://pbil.univ-lyon1.fr/members/duret/cours/inserm210604/exercise4/sim4.html) para a identificação das junções íntron-exon.

4. RESULTADOS

4.1– Identificação de clones de cDNA de *H. vastatrix* que codificam proteínas putativas secretadas

Foram sequenciados por passagem única (M13F) 12290 clones da biblioteca de cDNA da interação *C. arabica - H. vastatrix.* Sendo que 9828 sequências apresentaram qualidade phred >20, as quais quando alinhadas pelo programa CAP3 resultaram em 1004 contíguos e 3301 singletos (4305 sequências únicas). As sequências obtidas pelo agrupamento foram avaliadas quanto a sua origem vegetal ou fúngica pelos resultados do BlastN e aquelas que não apresentaram similaridade neste banco de dados foram comparadas com proteínas depositadas no banco não redundante do NCBI utilizando o algoritmo BlastX (Anexo – Tabela 1). Das sequências analisadas 71,85% (3093 sequências únicas) foram de origem vegetal, sendo que destas 68,78% (2961 sequências únicas) apresentavam similaridade a sequências de *Coffea* spp.; 7,01% (302 sequências únicas) de origem fúngica e 20,67% (890 sequências únicas) não apresentaram similaridade com sequências depositadas no banco de dados (Figura 5).

Figura 5: Percentual das sequências únicas obtidas com qualidade phred>20 quanto sua origem.

As sequências correspondentes às placas CAHV_CD_01_001-050 e CAHV_CD_02_001-050 com similaridade a genes de fungos e de plantas foram

previamente analisados por Rocha (2010). Este trabalhado foi focado na análise das sequências sem similaridade com sequências depositadas em vários bancos de dados, tendo em vista que a maioria das proteínas efetoras caracterizadas até o momento são proteínas novas, pequenas (< 400 aminoácidos) e com peptídeo sinal de secreção.

A tradução das sequências de nucleotídeos realizada com um *script* Perl nos três quadros positivos de leitura resultou na identificação de 180 ORFs com mais de 60 aa (Tabela 1). A análise das proteínas deduzidas por essas ORFs por meio do algoritmo SignalP de predição de sinal de secreção resultou na identificação de 46 (25%) ORFs com predição positiva (Y) em cinco ou mais parâmetros do programa. As proteínas codificadas por essas ORFs foram comparadas com proteínas deduzidas a partir do genoma de *Puccinia graminis* f. sp. *tritici* e do genoma de *Melampsora larici-populina*. Uma ORF (Contig439F2-1) codifica proteína com similaridade a proteínas preditas do banco de *P. graminis* e de *M. larici*, duas (Contig817F3-1 e CAHV_CD_02_049_F01 F3-1), exclusivamente, com proteínas preditas de *M. larici*. No entanto, as proteínas similares não tem função predita (Tabela 1).

As sequências positivas foram re-analisadas quanto à predição de sinal de exportação e hélices transmembrana utilizando outros algoritmos visando uma seleção mais estringente dos genes a serem completamente caracterizados. Desta forma, foram selecionados genes que codificam peptídeos que apresentaram valor D-score >= 0.65, Sprob >= 0.8, com predição de secreção (S) e score (RC) 1 a 3 para o programa TargetP e que não tivessem predição de hélice transmembrana confirmada pelo algoritmo Phobius e TMHMM (Tabela 1). Os clones correspondentes a cada gene foram completamente sequenciados e suas sequências foram analisadas quanto a qualidade e montadas usando o pacote Phred/Cross_match/Phrap. Em função da cofirmação da predição de peptídeo sinal, foram selecionados cinco contíguos 721, 339, 168, 972 e 1001 que foram denominados, respectivamente, RSP-HEVA-02, RSP-HEVA-03, RSP-HEVA-04A, RSP-HEVA-04B, RSP-HEVA-05 (Figura 6 e Tabela 2) para a caracterização mais detalhada e confirmação da secreção das proteínas preditas em leveduras.

Tabe	ela 1	 Predição c 	le peptídeo sina	l de secreção	e resultadado da	comparaç	ão com as prot	eínas deduzida	as a partir do	os genomas de l	<i>Puccinia graminis</i> f.
sp. t	ritici	e Melampsol	ra larici-populina	i para as ORF	s preditas com 6	60 ou mais	aminoácidos e	e que apresent	aram cinco	ou mais parâme	etros positivos pelo
prog	rama	SignalP.									

	N٥	N٥	SignalP-NN		SignalP-HMM	TargetP		Phobius		BlastP - P. graminis		BlastP - <i>M. larici</i>		
Nome do Clone	ESTs	aa	D-score ¹	Smax ²	Sprob ³	LOC ⁴	RC⁵	тм ⁶	SP ⁷	Descrição da sequência	E- value	Descrição da sequência	E- value	
Contig16F2-1	3	70	0,706	0,998	1,000	S	1	0	Υ	NO HIT		NO HIT		
Contig30F1-1	2	119	0,482	0,852	0,995	S	2	0	Υ	NO HIT		NO HIT		
Contig30F3-2	2	111	0,422	0,946	0,969	-	5	0	Y	NO HIT		NO HIT		
Contig58F3-1	11	227	0,718	0,972	1,000	S	1	0	Υ	NO HIT		NO HIT		
Contig84F3-1	4	152	0,717	0,988	0,724	S	1	0	Y	NO HIT		NO HIT		
Contig168F2-1	13	194	0,863	0,988	1,000	S	1	0	Y	NO HIT		NO HIT		
Contig235F3-1	4	208	0,703	0,990	0,999	S	1	0	Y	NO HIT		NO HIT		
Contig241F2-1	4	61	0,877	0,931	0,999	S	1	0	Y	NO HIT		NO HIT		
Contig339F2-1	4	125	0,764	0,990	0,876	S	2	0	Y	NO HIT		NO HIT		
Contig428F3-1	6	192	0,601	0,978	0,693	S	1	0	0	NO HIT		NO HIT		
Contig439F2-1	2	123	0,918	0,994	0,999	S	1	0	Υ	PGTT_14245 proteína hipotética (131 aa)	4e-14	jgi Mellp1 112579 fgenesh2(224aa)	2e-10	
Contig471F3-1	2	125	0,753	0,966	0,668	S	1	1	0	NO HIT		NO HIT		
Contig487F2-1	3	77	0,515	0,980	0,695	S	2	1	Y	NO HIT		NO HIT		
Contig641F3-1	5	115	0,846	0,989	0,997	S	1	0	Y	NO HIT		NO HIT		
Contig721F2-1	16	98	0,897	0,993	0,999	S	1	0	Y	NO HIT		NO HIT		
Contig729F3-1	2	123	0,853	0,995	0,999	S	1	0	Y	NO HIT		NO HIT		
Contig768F3-1	2	61	0,561	0,995	0,963	S	5	0	0	NO HIT		NO HIT		
Contig791F3-1	52	123	0,473	0,937	0,902	S	4	0	0	NO HIT		NO HIT		
Contig799F2-1	2	107	0,624	0,961	0,991	S	2	0	Y	NO HIT		NO HIT		
Contig817F3-1	3	140	0,809	0,964	1,000	S	2	0	Y	NO HIT		jgi Mellp1 104797 fgenesh2(219aa)	7e-05	
Contig863F3-1	13	138	0,436	0,901	0,871	S	4	0	0	NO HIT		NO HIT		
Contig914F1-1	2	153	0,766	0,992	0,959	S	3	0	Y	NO HIT		NO HIT		
Contig971F2-1	6	176	0,741	0,958	0,993	S	2	0	Y	NO HIT		NO HIT		
Contig972F3-1	6	193	0,890	0,986	1,000	S	1	0	Y	NO HIT		NO HIT		
Contig1001F1-4	3	121	0,699	0,987	0,939	S	3	0	Y	NO HIT		NO HIT		
CAHV_CD_01_013_B01 F1-1	1	100	0,688	0,985	0,949	S	1	0	Y	NO HIT		NO HIT		
CAHV_CD_01_017_D09 F1-2	1	69	0,668	0,992	0,488	S	1	0	Y	NO HIT		NO HIT		
CAHV_CD_01_035_A06 F2-1	1	132	0,817	0,992	0,992	S	1	0	Y	NO HIT		NO HIT		
CAHV_CD_01_040_G11 F2-1	1	166	0,773	0,995	0,995	S	1	2	Y	NO HIT		NO HIT		
CAHV_CD_01_050_C01 F1-2	1	71	0,626	0,932	0,731	S	2	0	Y	NO HIT		NO HIT		
CAHV_CD_02_003_A03 F3-1	1	62	0,668	0,993	0,990	S	1	0	Y	NO HIT		NO HIT		

CAHV CD 02 003 A04 F3-1	1	194	0,662	0,984	0.820	S	1	0	Y	NO HIT	NO HIT
CAHV_CD_02_004_A11 F1-5	1	68	0,709	0,982	0,974	S	1	0	Y	NO HIT	NO HIT
CAHV_CD_02_004_H03 F3-2	1	64	0,661	0,987	0,969	S	1	2	0	NO HIT	NO HIT
CAHV_CD_02_008_B03 F2-1	1	68	0,449	0,867	0,993	S	3	0	Y	NO HIT	NO HIT
CAHV_CD_02_010_E02 F3-1	1	60	0,651	0,945	0,993	S	5	0	Y	NO HIT	NO HIT
CAHV_CD_02_013_A02 F3-1	1	70	0,550	0,968	0,884	S	2	0	0	NO HIT	NO HIT
CAHV_CD_02_013_C10 F2-1	1	74	0,621	0,997	0,979	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_016_C10 F3-2	1	75	0,443	0,803	0,900	S	3	0	0	NO HIT	NO HIT
CAHV_CD_02_036_C05 F3-1	1	72	0,651	0,996	0,203	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_049_A07 F2-1	1	176	0,859	0,994	1,000	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_049_F01 F3-1	1	185	0,389	0,814	0,803	S	3	0	Υ	NO HIT	jgi Mellp1 52895 fgenesh1_pm.C_scaffold(223aa) 1e-14
CAHV_CD_02_156_E03 F3-1	1	133	0,909	0,985	0,995	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_162_F12 F1-1	1	62	0,908	0,987	1,000	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_167_D05 F3-1	1	126	0,914	0,993	1,000	S	1	0	Υ	NO HIT	NO HIT
CAHV_CD_02_173_B01 F3-1	1	134	0,739	0,979	0,802	S	1	1	0	NO HIT	NO HIT

1. D-score – Média da probabilidade da estimativa do ponto de clivagem do peptídeo sinal e da média dos valores de probabilidade da região atribuída ao peptídeo sinal, que discrimina a sequência do peptídeo sinal do restante da sequência da proteína;

2. Smax – valor máximo do S-score;

3. Sprob – Valor de probabilidade do algoritmo de predição HMM, que distingue entre peptídeo sinal (S), sinal de ancoramento (A) e outro (Q);

4. Loc – Predição da localização celular: (M) mitocôndria, (S) Secretado, ou seja, extracelular e – outro;

5. RC – "Coeficiente de confiabilidade", dado pela razão entre o maior e o segundo maior valor de predição de localização celular.

6. TM – Número de α -hélices transmembranas preditas.

7. SP – Predição de peptídeo sinal, Y=Yes, 0=ausência de predição.
SignalP NN

SignalP HMM

Figura 6: Resultado gráfico da predição de peptídeo sinal nas proteínas deduzidas a partir das ORFs preditas a partir das sequências dos contíguos 721(A), 339 (B), 168 (C), 972 (D) e 1001 (E), pelo programa SignalP, utilizando algoritmo baseado em redes neurais (NN) e modelos ocultos de Markov (HMM). Notar a diferência dos resultados obtidos para a proteína deduzida a partir do contíguo 339, comparativamente aos demais resultados.

Tabela 2 – Sequências *NO HITs* selecionadas do banco de ESTs da interação *H. vastatrix* – cafeeiro e resultados da predição de peptídeo sinal, localização celular e domínios transmembrana das proteínas preditas com base em diferentes algoritmos.

Gono	Contíguo			SignalP-NN		SignalP-HMM TargetP		тыцыми	Phobius		
Gene	Contiguo	Nº ESIS	in [°] aa	D-score ¹	Smax ²	Sprob ³	LOC⁴	RC⁵		TM ⁷	SP ⁸
RSP- HEVA-02	Contig721F2-1	16	98	0,897	0,993	0,999	S	1	PredHel ⁶ =0	0	Y
RSP-HEVA-03	Contig339F2-1	4	125	0,764	0,990	0,876	S	2	PredHel=0	0	Y
RSP-HEVA-04A	Contig168F2-1	13	194	0,863	0,988	1,000	S	1	PredHel=0	0	Y
RSP-HEVA-04B	Contig972F3-1	6	193	0,890	0,986	1,000	S	1	PredHel=0	0	Y
RSP-HEVA-05	Contig1001F1-4	3	121	0,699	0,987	0,939	S	3	PredHel=0	0	Y

D-score – Média da estimativa do ponto de clivagem do peptídeo sinal e da média dos valores de probabilidade da região atribuída ao peptídeo sinal, que discrimina entre a região do peptídeo sinal do restante da proteína;
 Smax – valor máximo do S-score;
 Sprob – Valor de probabilidade do algoritmo de predição HMM, que distingue entre peptídeo sinal (S), sinal de ancoramento (A) e outro (Q);
 Loc – Predição da localização celular, (M) mitocôndria, (S) extracelular, ou seja, secretada, e – outro;
 RC – "Coeficiente de confiabilidade", dado pela razão entre o maior e o segundo maior valor de predição de localização;
 PredHel – Número de α-hélices transmenbrana preditas;
 TM – Número de α-hélices transmembranas preditas;
 SP – Predição de peptídeo sinal, Y=Yes.

As cinco ORFs preditas para os candidatos a efetores de *H. vastatrix* selecionadas codificam peptídeos variando de 98 a 194 resíduos de aminoácidos, que apresentam peptídeo sinal, e não apresentam similaridade com proteínas depositadas no banco de dados do NCBI. Além disso, nenhum desses genes codificam proteínas que apresentaram similaridade às proteínas preditas a partir do genoma de *Puccinia graminis* f. sp. *tritici e Melampsora larici-populina* depositadas nos respectivos bancos de dados dessas ferrugens, demonstrando que esses genes são exclusivos de *Hemileia* (Tabela 1).

A presença de resíduos de cisteína foi verificada para as sequências selecionadas, e foi possível observar que os genes RSP-HEVA-03 e RSP-HEVA-05 apresentam em sua composição 10 e 9 resíduos de cisteína, respectivamente, os outros três genes selecionados apresentam apenas 2 ou 3 resíduos de cisteína. Sítios passíveis de formação de pontes dissulfeto foram observados em todos os genes selecionados por meio da análise com o programa DIANNA (Tabela 3).

Tabela 3 - Predição de pontes de dissulfeto nas proteínas preditas a partir das ORFs dos genes selecionados.

Gene	Contíguo	№ de resíduos de Cisteína	Posição dos resíduos de Cisteína	Distância	Predição de pontes dissulfeto
RSP- HEVA-02	Contig721F2-1	2	13 - 15	2	IAIFACFCTLV - IFACFCTLVSS
			28 - 67	39	GSTINCKDNVR - FVAHDCMFNGT
			46 - 94	48	PSSHDCFSNDN - HYPIQCGVKKD
RSP-HEVA-03	Contig339F2-1	10	55 - 59	4	DNFWSCPKGCD - SCPKGCDTFVA
			79 - 103	24	RKSLSCTGVVR - KDVWKCKSGPP
			112 - 115	3	RKSLSCTGVVR - KDVWKCKSGPP
RSP-HEVA-04A	Contig168F2-1	3	60 - 125	65	TLYGVCISYVA - AIKDICNQYPE
RSP-HEVA-04B	Contig972F3-1	2	6 - 61	55	MQFSLCSLLAL - TLVDFCIDTAA
			28 - 102	74	RFNLSCTGSVR - NEQWLCQSGPT
	Contig1001E1 4	0	55 - 67	12	EYFYACAGGCD - ITSRDCKLGEK
	Contig 100 TF 1-4	3	59 - 111	52	ACAGGCDTITS - PTSVQCYDCRD
			79 - 93	14	RSSQVCDTLVR - NTTIVCGVGNE

Foi observado, por meio do alinhamento das sequências aminoácidos geradas pelos genes RSP-HEVA-04A e RSP-HEVA-04B a presença de um domínio RSLD semelhante ao domínio RXLR encontrado em oomicetos (Figura 7).

Os clones selecionados tiveram suas ORFs amplificadas utilizando os oligonucleotídeos iniciadores desenhados para clonagem no sistema YST. Foram utilizados os mesmos oligonucleotídeos iniciadores para amplificar os fragmentos correspondentes aos contíguos 168 e 972. Apesar de serem amplificados pelos mesmos oligonucleotídeos, os mesmos possuem diferenças internas na sequência (Figura 7).

```
MQFSLCSLLALFAFFFGASALPKTEVLSTVSSLDTRSLDTVIQSNRLSKRDIVVYTLVDF 60
Contig972F3-1 193
Contig168F2-1_194 MQFSLCSLLALFAFFFSASALPKTEVLSTVSSLDTRSLDTVIQSNHLSKRD-EGYTLYGV 59
Contig972F3-1_193 CIDTAAEILVPLYRKNIVSDAGYLIAVSIATAWNVDSGITLTAALVGGYVSVSFAIIIES 120
Contig168F2-1 194 CISYVAEGLRLPLSDKFVKYIAEEISDAISSAWNYPSNTILLRKNIARFGSSNLGDALDK 119
                     ** ** *
                                        . * . . * . . * * * .
                                  . : : * .
                                                               :. : * .:.
Contig972F3-1 193 TVNALVEMLAT-DSASAYNLLVYVVRALYKDYLNRDIDFPAY--NPSPLLMANMSKSKKP 177
Contig168F2-1 194 AIKDICNQYPENDYSVENFVIEVVGKIYSAYGLGSPNFAARKNNPSGLLASNARTNVK- 178
                 *** ** ** **
Contig972F3-1 193
                 LKKLTFHPHKPRHLG 192
Contig168F2-1 194 KKKLVTYPIKDRHLG 193
                   *** * * * ****
```

Figura 7: Alinhamento múltiplo das proteínas preditas das ORFs preditas dos genes RSP-HEVA-4A e RSP-HEVA-04B, utilizando o programa CLUSTALW. Cores: Vermelho – resíduo pequeno (pequeno positivo, hidrofóbico); Azul – acídico; Magenta – básico; verde – hidroxil, amina, básico; Cinza – Outros; [] região semelhante ao domínio RXLR-. Pontos: "*" identidade; ":" - substituição conservada, de acordo com as cores; "." – substituições semiconservadas.

Todos os oligonucleotídeos desenhados amplificaram fragmentos do tamanho médio predito. Os fragmentos amplificados pelos oligonucleotídeos desenhados para o sistema YST foram clonados no vetor pYST-1 de forma a manter a *frame* com o gene que codifica a enzima invertase. As clonagens foram confirmadas por PCR de colônia e sequenciamento dos plasmídeos recombinantes. A secreção foi confirmada *in vitro* para as ORFs dos genes RSP-HEVA-02, RSP-HEVA-04A, RSP-HEVA-04B e RSP-HEVA-05. A avaliação da secreção das proteínas recombinantes expressas em levedura está exemplificada na Figura 8 onde pode-se observar o crescimento de colônias de leveduras mutantes para o gene da invertase em meio de seleção contendo sacarose como única fonte de carbono.

Figura 8: Análise da secreção no sistema YST dos genes RSP-HEVA- 02 (A), RSP-HEVA - 04A (B), RSP-HEVA-04B (C) e RSP-HEVA-05 (D) em meio contendo apenas sacarose como fonte de carbono.

Fez-se ainda uma comparação, por meio do alinhamento utilizando o programa CAP3 entre os cDNAs dos 5 genes selecionados da biblioteca da interação com cDNAs da biblioteca de esporos germinados de *H. vastatrix* depositada no Laboratório de Genômica – UFV, constituída por 3697 sequências que quando alinhadas pelo programas CAP 3 resultaram em 474 contíguos e 776 singletos (1250 sequências únicas). Apenas um desses genes (RSP-HEVA-03) mostrou similaridade com sequências da biblioteca de esporos germinados (Contig 269). Todavia, o alinhamento das proteínas predidas por esses dois genes demonstra tratar-se de genes diferentes (Figura 9). Esse resultado indica que todos os genes selecionados são expressos no interior do tecido infectado.

Contig339_CAHV Contig269_esporo	MIRSVFFFLSYLVMSIYSQYSNGSTINCKDNVRPSQHGGPPSSHDCFSNDNFWSCPKGCD MISTYCQHPGKATIECKDNVRPSQHGEAPPSYDCFSRDSFKSCAGGCD ::* *.*:. :**:********* .*.************	60 48
Contig339_CAHV Contig269_esporo	TFVAHDCMFNGTTRKSLSCTGVVRVNDTHYPIQCGVKKDVWKCKSGPPFVLCYGCIKSKN TFVARECVLNGKTLLTQSCTAVVRVNDSHYPIQCGVKKDIWKCKSGPSFVHCYGCTNSKH ****::*::*:*:*: : ***.* : *************	120 108
Contig339_CAHV Contig269_esporo	YALK 124 YALK 112	

Figura 9: Alinhamento da proteína codificadas pela ORF predita a partir da sequência do gene RSP-HEVA-03 com a proteína predita a partir da ORF do contíguo 269 da biblioteca de cDNAs de esporos germinados, utilizando o programa CLUSTALW. Cores: Vermelho – resíduo pequeno (pequeno positivo, hidrofóbico); Azul – acídico; Magenta – básico; verde – hidroxil, amina, básico; Cinza – Outros; -. Pontos: "*" - identidade; ":" - substituição conservada, de acordo com as cores; "." – substituições semi-conservadas.

4.2 – Estrutura genômica dos clones selecionados

Após a identificação e confirmação da secreção pelo sistema YST dos genes selecionados, foi realizada amplificação dos mesmos por PCR a partir do DNA genômico extraído do isolado monopustular HV-01 de *H. vastatrix* a fim de comprovar a origem fúngica dos genes selecionados. Foi observada a amplificação de todos os genes (Figura 10), confirmando assim a origem fúngica das sequências selecionadas. O amplicon obtido para o gene RSP-HEVA-02 possui tamanho aproximado de 300pb, similar ao cDNA. No entanto, os amplicons referentes aos outros quatro genes apresentaram tamanho diferenciado em relação ao seu cDNA indicando a presença de íntrons na sequência genômica. O DNA genômico do gene RSP-HEVA-03 apresentou 667pb enquanto seu cDNA 374pb. Já o DNA genômico do gene RSP-HEVA-04 apresentou dois amplicons de tamanhos diferentes indicando a amplificação de dois genes diferentes. O amplicon menor possui um tamanho de 706pb e o maior 1000pb, já seu cDNA correspondente possui 581pb. O amplicon correspondente ao gene RSP-HEVA-05 tem um tamanho de 746pb e o seu cDNA 362pb.

Figura 10: Resultado da amplificação por PCR dos genes selecionados a partir do DNA genômico de *H. vastatrix* ou dos clones cDNA, utilizando o mesmo par de oligonucleotídeos, visualizado em gel de agarose 1% corado por brometo de etídeo. Gene RSP-HEVA-02 clone cDNA (A) e DNA genômico (B); Gene RSP-HEVA-03 DNA genômico (C) e clone cDNA (D); Gene RSP-HEVA-04 DNA genômico (E) e clone cDNA (F); Gene RSP-HEVA-05 DNA genômico (G) e clone cDNA (H);

Para avaliar a estrutura íntro-éxon dos cinco genes selecionados, as ORFs deduzidas a partir das sequências de cDNA e DNA genômico foram comparadas utilizando o programa *SIM4*. A análise resultante do alinhamento da sequência do cDNA do gene RSP-HEVA-02 com sequência do DNA genômico do mesmo gene determinou que a região codificadora desse gene não possui íntron (Figura 11).

HV02_GENO HV02_cDNA	ATGAAGTTGACCCTATTTTTCATTGCGCTTTTTGCATGTTTTTGCACTTTGGTGTCTTCC ATGAAGTTGACCCTATTTTTCATTGCGCTTTTTGCATGTTTTTGCACTTTGGTGTCTTCC *****	60 60
HV02_GENO HV02_cDNA	ATCCCTGCTCCTGACACGGAAAACCACGTAAAGCCTGAAGGCGCCGATAAAAAATGGGGT ATCCCTGCTCCTGACACGGAAAACCACGTAAAGCCTGAAGGCGCCGATAAAAAATGGGGT ************************	120 120
HV02_GENO HV02_cDNA	TTTCCCCCCTGGGTTTACCCTCTGTACAACACTTACCCCCTTTCCTATGACTCTCTCT	180 180
HV02_GENO HV02_cDNA	CTCCGTCGATACTGGCCTAATTGGTGGAATTATATTCCAGCCGGATATGGAGGTGGAGTG CTCCGTCGATACTGGCCTAATTGGTGGAATTATATTCCAGCCGGATATGGAGGTGGAGTG *********************	240 240
HV02_GENO HV02_cDNA	CTTTTGGATGCCAAGCAGCAACAATGCTAAAGCAAAAAGCCAAAAGCCAGAGTAA 295 CTTTTGGATGCCAAGCAGCAACAATGCTAAAGCAAAAAGCCAAAAGCCAGAGTAA 294 ************************************	

Figura 11: Alinhamento das sequências de nucleotídeos do DNA genômico (HV02_GENO) e do cDNA (HV02_cDNA) referente à região codificadora do gene RSP-HEVA-02 utilizando o programa ClustalW. Éxons representados em letras maiúsculas.

A região codificadora de RSP-HEVA-03 (Figura 12) é dividida em cinco éxons interrompidos por quatro íntrons, sendo o primeiro constituído de 88pb, o segundo de 70pb, o terceiro de 62pb e o quarto de 71pb. Cada íntron possui as sequências conservadas GT e AG em suas extremidades.

HV03_GENO HV03_cDNA	ATGATTAGAAGTGTCTTTTTCTTCCTTAGTTATCTAGTCATGAGCATTTATTCACAATAC ATGATTAGAAGTGTCTTTTTCTTCCTTAGTTATCTAGTCATGAGCATTTATTCACAATAC ***********************	60 60
HV3_GENO HV03_cDNA	TCTAATGGATCGACCATAAACTGTAAAGATAACGTACGCCCATCGCAACATGGAGGACCC TCTAATGGATCGACCATAAACTGTAAAGATAACGTACGCCCATCGCAACATGGAGGACCC ******************************	120 120
HV03_GENO HV03_cDNA	CCATCTT gtgagctaaaatataccaataaatcaatacaaaagtctccgttgatcattaaa CCATCTT	180 127
HV03_GENO HV03_cDNA	<pre>aacaagaaattccttgctatctgctcgaacgacag GGCACGATTGCTCCTCTAATGACAACGCACGATTGCTTCTCTAATGACAA **********************************</pre>	240 152
HV03_GENO HV03_cDNA	CTTCTGGTCCTGCCCTAAAGGTTGCGATACATTTG <u>gtcagtgtctatagctactgaaata</u> CTTCTGGTCCTGCCCTAAAGGTTGCGATACATTTG	300 187
HV03_GENO HV03_cDNA	<i>tttcatagagcctctagctaattactcatatctttcaaaaaat<u>ag</u>TCGCTCATGATTGTA TCGCTCATGATTGTA **************</i>	360 202
HV03_GENO HV03_cDNA	TGTTCAATGGTACAACCCGAAAAAGCCTGAGCTGTACCGGTGTAGTTCGTGTCAATGACA TGTTCAATGGTACAACCCGAAAAAGCCTGAGCTGTACCGGTGTAGTTCGTGTCAATGACA ***********************************	420 262
HV03_GENO HV03_cDNA	CTCATTACCCCATAC <u>gt</u> aagaaaccattacttcatcgaaaatgcttttttgtggatatta CTCATTACCCCATAC *********	480 277
HV03_GENO HV03_cDNA	<pre>aaacttactttcattagAATCGTGGAGTTAAAAAAGACGTCTGGAAATGCAAATCGGGACAATCGTGGAGTTAAAAAAGACGTCTGGAAATGCAAATCGGGAC *********************************</pre>	540 319
HV03_GENO HV03_cDNA	CTCCATTCGTCC <u>gt</u> aagttctcaaatcaaaagatacccactcaacccaacc	600 331
HV03_GENO HV03_cDNA	<i>cgttattaccacaaaatatc<u>ag</u>TTTGCTATGGCTGCATCAAATCTAAAAACTATGCTTT</i> TTTGCTATGGCTGCATCAAATCTAAAAACTATGCTTT *********************************	660 368
HV03_GENO HV03_cDNA	GAAGTAG 667 GAAGTAG 375	

Figura 12: Alinhamento das sequências de nucleotídeos do DNA genômico (HV03_GENO) e do cDNA (HV03_cDNA) referente à região codificadora do gene RSP-HEVA-03 utilizando o programa ClustalW. Em letras minúsculas e em itálico representa as sequências dos íntrons. Sequências conservadas GT e AG nas extremidades de cada íntron estão sublinhadas. Éxons representados em letras maiúsculas.

No caso de RSP-HEVA-04A (Figura13), a sequência codificadora é composta de três éxons interrompidos por dois íntrons, sendo o primeiro com 61pb e o segundo composto de 63pb. Cada íntron também possui sequências conservadas GT e AG em suas extremidades. O gene RSP-HEVA-04B também possui essa mesma estrutura genética, porém, há uma diferença significativa entre as sequências genômica e do cDNA no terceiro éxon, demonstrando que são genes diferentes que apresentam similaridade na região 5' (Figura 14).

HV04_GENO HV04A_cDNA	ATGCAGTTCTCACTTTGCTCATTGCTGGCTCTGTTTG gtggtactacctttcaaatctt ATGCAGTTCTCACTTTGCTCATTGCTGGCTCTGTTTG	60 37
HV04_GENO HV04A_cDNA	<i>ctggtcctctctctgcttacattccctatcactctc<u>ag</u>CTTTCTTTTCAGCGCCTCAGC</i> CTTTCTTTTCAGCGCCTCAGC ***********************************	120 59
HV04_GENO HV04A_cDNA	TTTGCCTAAAACAGAGGTTCTGTCCACCGTCTC <u>gt</u> aagttatgcccattctccattaaaa TTTGCCTAAAACAGAGGTTCTGTCCACCGTCTC	180 92
HV04_GENO HV04A_cDNA	aaaaacttttaacatatatttataaccactttct <u>ag</u> TTCTCTTGACACTCGATCACTTGA TTCTCTTGACACTCGATCACTTGA ***********************************	240 116
HV04_GENO HV04A_cDNA	TACCGTCATCCAAAGCAACCATCTTTCGAAAAGAGATGAAGGATATACTCTTTATGGCGT TACCGTCATCCAAAGCAACCATCTTTCGAAAAGAGATGAAGGATATACTCTTTATGGCGT *********************************	300 176
HV04_GENO HV04A_cDNA	GTGCATTTCATACGTTGCAGAAGGACTTCGCTTGCCTCTCTCGGATAAGTTTGTAAAGTA GTGCATTTCATACGTTGCAGAAGGACTTCGCTTGCCTCTCTCGGATAAGTTTGTAAAGTA ***********	360 236
HV04_GENO HV04_cDNA	CATCGCAGAAGAGATATCGGATGCTATATCATCCGCTTGGAATTACCCATCCAATACTAT CATCGCAGAAGAGATATCGGATGCTATATCATCCGCTTGGAATTACCCATCCAATACTAT *******************	420 296
HV04_GENO HV04A_cDNA	CTTGCTAAGAAAAATATCGCCCGATTCGGCTCCAGTAACCTGGACGACGCCCTCGATAA CTTGCTAAGAAAAAATATCGCCCGATTCGGCTCCAGTAACCTGGACGACGCCCTCGATAA ************	480 356
HV04_GENO HV04A_cDNA	АGCTATAAAAGATATCTGTAATCAATATCCAGAGAATGATTATTATAGCGTTGAAAATTT AGCTATAAAAGATATCTGTAATCAATATCCAGAGAATGATTATTATAGCGTTGAAAATTT ****************************	540 416
HV04_GENO HV04A_cDNA	TGTTATAGATGTTGTGGGGAAGATCTATTCAGCATATGGTCTCGGGAGCCCCAATTTTGC TGTTATAGATGTTGTGGGGAAGATCTATTCAGCATATGGTCTCGGGAGCCCCAATTTTGC ***********	600 476
HV04_GENO HV04A_cDNA	AGCACGAAAGAATAATCCTAGTGGTCTTTTGGCGTCCAATGCAAGGACGAATGTTAAGAA AGCACGAAAGAATAATCCTAGTGGTCTTTTGGCGTCCAATGCAAGGACGAATGTTAAGAA ************	660 536
HV04_GENO HV04A_cDNA	GAAGAAACTTGTAACTTACCCTATTAAAGATCGTCATTTGGGTTAA 706 GAAGAAACTTGTAACTTACCCTATTAAAGATCGTCATTTGGGTTAA 582	

Figura 13: Alinhamento das sequências de nucleotídeos do DNA genômico (HV04_GENO) e do cDNA (HV04A_cDNA) referente à região codificadora do gene RSP-HEVA-04A utilizando o programa ClustalW. Em letras minúsculas e em itálico representa as sequências dos íntrons. Sequências conservadas GT e AG nas extremidades de cada íntron estão sublinhadas. Éxons representados em letras maiúsculas.

HV04_GENO HV04B_CDNA	ATGCAGTTCTCACTTTGCTCATTGCTGGCTCTGTTTG <u>gtgggtactacctttcaaatctt</u> ATGCAGTTCTCACTTTGCTCATTGCTGGCTCTGTTTG	60 37
HV04_GENO HV04B_cDNA	<i>ctggtcctctctctgcttacattccctatcactctc<u>ag</u>CTTTCTTTTCAGCGCCTCAGC</i> CTTTCTTTTCAGCGCCTCAGC ***********************************	120 59
HV04_GENO HV04B_cDNA	TTTGCCTAAAACAGAGGTTCTGTCCACCGTCTC <u>gt</u> aagttatgcccattctccattaaaa TTTGCCTAAAACAGAGGTTCTGTCCACCGTCTC	180 92
HV04_GENO HV04B_cDNA	aaaaacttttaacatatatttataaccactttct <u>ag</u> TTCTCTTGACACTCGATCACTTGA TTCTCTTGACACTCGATCACTTGA ***********************************	240 116
HV04_GENO HV04B_cDNA	TACCGTCATCCAAAGCAACCATCTTTCGAAAAGAGATGAAGGATATACTCTTTATGGCGT TACCGTCATCCAAAGCAACCGTCTTTCGAAGAGAGAGATATTGTGGT *************************	300 161
HV04_GENO HV04B_cDNA	GTGCATTTCATACGTTGCAGAAGGACTTCGCTTGCCTCTCTCGGATAAGTTTGTAAAGTA TTACACTCTCGTTGATTTTTGCATTGATACAGC- * ** * * ***** * **	360 194
HV04_GENO HV04B_cDNA	CATCGCAGAAGAGATATCGGATGCTATATCATCCGCTTGGAATTACCCATCCAATACTAT TGCAGAGGTTCTTGTACCA-CCGTAT ***** ** ** ** ** ***	420 219
HV04_GENO HV04B_cDNA	CTTGCTAAGAAAAATATCGCCCGATTCGGCTCCAGTAACCTGGACGACGCCCTCGAT CGCAAGAACATCGTCTCAGATGCGGGTAATCTG * * ** ** **** * *** *** ***	478 252
HV04_GENO HV04B_cDNA	AAAGCTATAAAAGATATCTGTACTCAATATCCAGAGAATGATTATTATAGCGTTGAAAAT ATAGCTGTGTCTAT-TGCAACAGT-ATGGAATGTAGATAGTGGCGTCACC * **** * * *** * * * * * * * **** * * ****	538 300
HV04_GENO HV04B_cDNA	TTTGTTATAGATGTTGTGGGGAAGATCTATTCAGCATATGGTCTCGGGAGCCCCAATTTC TTGACTGCAG-CATTGGTCCGGCGGTTACGTCAGTGTCAGCTTC ** * ** *** *** *** *** *** *** *** **	598 343
HV04_GENO HV04B_cDNA	GCAGCACGAAAGAATAATCCTAGTGGTCTTTTGGCGTCCAATGCAAGGACGAATGTTAAG GCCATGATCATCG-AAAGGACTGTATACGCCCTCGTGGAAATGCTA ** ** ** * * * *** * ** ** * ** ** ** *	658 388
HV04_GENO HV04B_cDNA	AAGAAGAAACTTGTAACTTACCCTTATTAAGATCGTCCTTTGGTTTAA 706 GCAACTGA 396	

Figura 14: Alinhamento das sequências de nucleotídeos do DNA genômico (HV04_GENO) e do cDNA (HV04B_cDNA) referente à região codificadora do gene RSP-HEVA-04 utilizando o programa ClustalW. Em letras minúsculas e em itálico representa as sequências dos íntrons. Sequências conservadas GT e AG nas extremidades de cada íntron estão sublinhadas. Éxons representados em letras maiúsculas.

Já a análise resultante do alinhamento do cDNA com DNA genômico do gene RSP-HEVA-05, indicou a presença de cinco éxons interrompidos por quatro íntrons com 55, 60, 57 e 196 pb respectivamente. Todos os íntrons apresentaram as sequências conservadas GT e AG em suas extremidades (Figura 15).

HV05_GENO HV05_cDNA	ATGAAAAGAAATCAAGGAATTGTTCCAAAAATTCTCAACTTGGTAGTTAGCATCCTCGC 60 ATGAAAAGAAATCAAGGAATTGTTCCAAAAATCTTCAACTTGGTAGTTAGCATCCTCGC 56 ***********************
HV05_GENO HV 05_cDNA	CCCAATCTTGCCTCGATCTCAATTGATCTGGCAACTGGGAAAGCGTGGCGCCCGGATA 120 CCCAATCTTGCCTCGATCTCAATTGATCTGGCAACTGGGAAAGCGTGGCGCCCCGGATA 106 ************************************
HV05_GENO HV05_cDNA	CGCACAATGAACCGCCCCCCT <u>gt</u> aggccattttattctcttcatacttgataaagcctga 180 CGCACAATGAACCGCCCCCCT 127 ************
HV05_GENO HV05_cDNA	<i>cactcctgagttacag</i> CACACGACTGCTGGAGTGAAGAGTATTTCTATGCCTGCGCCGGT 240 CACACGACTGCTGGAGTGAAGAGTATTTCTATGCCTGCGCCGGT 171 ***********************************
HV05_GENO HV05_cDNA	GGTTGCGACACCATTA <u>g</u> taagtattttatcgctcacttttcataatttgtctctgaagtc 300 GGTTGCGACACCATTA 187 ********
HV05_GENO hv05_cDNA	<i>cttgaatttcttttag</i> CTTCCAGAGATTGTAAACTTGGTGAAAAAACCCGTTCAAGCCAA 360 CTTCCAGAGATTGTAAACTTGGTGAAAAAACCCGTTCAAGCCAA 231 **********
HV05_GENO HV05_cDNA	GTTTGTGATACGCTAGTTCGTGAATATATAAATACAACCATAG <u>gt</u> atgcgataattttcc 420 GTTTGTGATACGCTAGTTCGTGAATATAAAAATACAACCATAG 274 ********
HV05_GENO HV05_cDNA	agaatggtttcattgtattgatgttctatgatttattcagTATGTGGAGTCGGGAATGAA 480 TATGTGGAGTCGGGAATGAA 294 *****************
HV05_GENO HV05_cDNA	CAATGGCTTTGTCAATCAGGGCCTACCTCCGTCC <u>gt</u> aagtgataacagtctatagatatg540 CAATGGCTTTGTCAATCAGGGCCTACCTCCGTCC328 ********
HV05_GENO HV05_cDNA	cagctgtttgtgaaaaccttgctctttttttgctcctcatcccccccc
HV05_GENO HV05_cDNA	gtttaaactcatgtttttggcggagagtggaaggcaaaaacatagcgagcttttcccaaa 660
HV05_GENO HV05_cDNA	cagctgtatctatttaaattacgtttcttaccctctaattttatttccagAATGCTATG 720 AATGCTATG 337 ********
HV05_GENO HV05_cDNA	ACTGCAGAGACGCCATCAAACATTAA 746 ACTGCAGAGACGCCATCAAACATTAA 363 ********************

Figura 15: Alinhamento das sequências de nucleotídeos do DNA genômico (HV05_GENO) e do cDNA (HV05_cDNA) referente à região codificadora do gene RSP-HEVA-05 utilizando o programa ClustalW. Em letras minúsculas e em itálico representa as sequências dos íntrons. Sequências conservadas GT e AG nas extremidades de cada íntron estão sublinhadas. Éxons representados em letras maiúsculas.

5. DISCUSSÃO

As proteínas secretadas pelas ferrugens durante a interação com os seus hospedeiros desempenham papel fundamental e determinante no fenótipo dessas interações. Parte dessas proteínas auxiliam ou estão envolvidas no desenvolvimento de estruturas fúngicas essenciais para o ingresso, colonização e reprodução no hospedeiro como, por exemplo, carbohidrato deacetilases, hidrolases e hidrofobinas, dentre várias outras. Porém, um conjunto específico dessas proteínas atua no apoplasto ou no citoplasma da célula hospedeira, onde suprimem as respostas de defesa ou manipulam o metabolismo do hospedeiro, favorecendo o estabelecimento de uma relação biotrófica, característica desses parasitas obrigatórios, sendo, portanto, denominadas proteínas efetoras. Como demonstrado anteriormente, essas proteínas efetoras sintetizadas no haustório, estrutura especializada formada no interior das células das plantas hospedeiras, são também alvo do sistema imune vegetal. Em plantas resistentes às ferrugens, a resposta de resistência, na maioria das vezes, acontece após o desenvolvimento dos haustórios (Heath, 1997). Em concordância com essas observações, proteínas da ferrugem do linho (Melampsora *lini*) são produzidas nos haustórios, secretadas e translocadas para o citoplasma das células do linho, onde são "reconhecidas" por proteínas de resistência codificadas por genes de resistência presentes em determinados genótipos de linho (Doods et al., 2006; Dodds et al., 2009; Catanzariti et al., 2010). Nessa situação, os genes que codificam essas proteínas são denominados genes de avirulência pelo fato de restringirem o desenvolvimento do patógeno em cultivares de linho contendo os genes de resistência correpondentes. Dessa forma, a caracterização do secretoma das ferrugens é peça fundamental para o entendimento dos mecanismos de patogênese, para o desenvolvimento de uma resistência genética mais durável e de novas estratégias de controle desse importante grupo de fitopatógenos.

Diante do exposto anteriormente, uma estratégia óbvia para identificar genes que codificam proteínas secretadas por *Hemileia vastatrix* seria a purificação de haustórios e a caracterização de genes expressos nessa estrutura e que codificam proteínas secretadas, como efetuado para *M. lini* por Catanzariti *et al.* (2006). Ao invés disso, no presente trabalho optou-se pela estratégia de caracterização de

genes expressos na interação por meio sequenciamento da extremidade 5' de clones de cDNA de uma biblioteca de cDNA construída a partir de RNA mensageiro isolado de tecido infectado, antes do desenvolvimento das estruturas reprodutivas do patógeno. Dada a escassez de informações genômicas nesse patossistema, esse procedimento permitiu também identificar genes do cafeeiro expressos em resposta à infecção, como evidenciado nos resultados das análises efetuadas por Rocha (2010). O grande número de seguências únicas de origem vegetal (71,85%, 3093 sequências únicas) verificado na biblioteca sequenciada era esperado, já que a biomassa fúngica constitui uma proporção pequena do tecido infectado. Todavia, a proporção de sequências únicas que potencialmente representam genes de H. vastatrix foi altamente signitivativa (28,15%, 1192 sequências). Desse conjunto, 302 sequências (7,01% de todas as sequências únicas analisadas) apresentaram similaridade a sequências de fungo presente em bancos de dados. Dentre elas destacam-se sequências similares aos genes MAD1, THI1, THI2 de Uromyces fabae, que são expressos em maior intensidade em haustórios (Sohn et al., 2000; Voegele et al., 2005) e o gene RTP1, expresso exclusivamento no haustório (Kemen et al., 2005). RTP1 codifica a proteína RTP1, conservada em Uredinales, que é secretada e acumula no citoplasma da planta hospedeira (Kemen et al., 2005). A identificação desses genes demonstra que a abrangência do sequenciamento efetuado foi suficiente para incluir genes de H. vastratrix expressos no haustório, corroborando a estratégia adotada no presente estudo. A construção de biblioteca subtrativas pela técnica de SSH (Subtractive supressive hybridization) (Diatchenko et al., 1996) seria uma outra opção para estudos dessa natureza, conforme utilizado por Dodds et al. (2004) na clonagem do gene Avr567. Todavia, as sequências dos clones geradas nessas bibliotecas contem insertos curtos, dificultando a caracterização completa dos genes identificados. Além disso, a subtração nem sempre é eficiente, em função da pequena proporção do tecido fúngico no material sendo analisado, e pela própria expressão diferencial de genes da planta em resposta à infecção.

Como a maioria dos genes efetores de fungos e oomicetos caracterizados até o momento codificam proteínas novas, pequenas (<400 aminoácidos) e com peptídeo sinal de secreção, o trabalho foi centrado nas 890 sequências únicas sem

similaridade com sequências depositadas em bancos de dados. Dessas, 46 (5,0%) apresentaram ORFs que codificam proteínas de 61 a 227 aa com predição positiva para peptídeo sinal, com base em diferentes algoritmos utilizados. Essas sequências são representas por 1 a 52 etiquetas de sequências expressas, e somente três sequências únicas codicam proteínas preditas com peptídeo sinal que apresentam similaridade com proteínas preditas das ferrugens do trigo (Puccinia graminis f. sp. tritici) e do álamo (Melampsora larici-populina). Cinco genes selecionados representando cinco sequências únicas positivas para a predição de peptídeo sinal (ver a seguir) também foram amplificados a partir de DNA genômico de H. vastatrix, sugerindo que grande parte dessas sequências únicas, com predição de peptídeo sinal podem ser derivadas de H. vastatrix. Também é possível que a proporção de sequências positivas seja maior do que 5%, pelo fato dos cDNAs correpondentes serem cDNAs incompletos. Da mesma forma, a predição do peptídeo sinal pode ser errônea baseda em sequências internas das proteínas. como regiões transmembranas, pelo fato das sequências analisadas serem sequências parciais da região 5' de cDNA incompletos. Também é possível que algumas proteínas efetoras de H. vastatrix não possuam peptídeo sinal na extremidade N-terminal, à semelhança das proteínas AVRa10 e AVRk1 de Blumeria graminis f. sp. hordei (Ridout et al., 2006).

Para corroborar os resultados das análises de bioinformática, cinco genes representados por sequências únicas positivas para predição de peptídeo sinal foram completamente caracterizados e a secreção do peptídeo codificado pela ORF predita validada utilizando o sistema de secreção em leveduras. Todos os cincos genes caracterizados codificam proteínas com peptídeo sinal que possuem resíduos de cisteínas em sua composição protéica, uma outra característica comum a vários efetores fúngicos; e, exceto a proteína predita a partir do gene RSP-HEVA-03, todas as demais foram secretadas em levedura. As proteínas codificadas pelos genes RSP-HEVA-03 e RSP-HEVA-05 se destacam por apresentar em sua composição 10 e 9 resíduos de cisteína, respectivamente. Esses resíduos de cisteínas podem auxiliar na estabilidade da proteína no meio extracelular pela formação de pontes dissulfetos (Templeton *et al.*, 1994; Rep, 2005). Em fungos fitopatogênicos, como *Cladosporium fulvum*, mutantes do efetor Avr4 (deleção dos resíduos de cisteína)

apresentaram sensibilidade a proteases da planta de tomate, embora mantivessem a característica efetora de aderência à parede celular do fungo (van den Burg *et al.*, 2006). É importante ressaltar, entretanto, que nem todas proteínas efetoras de fungos contém resíduos de cisteínas; a sequência protéica predita do gene candidato a efetor *Vice6* de *Venturia inaequalis* não possui resíduo de cisteína (Bowen *et al.*, 2009), assim como as proteínas efetoras AvrL567 e AvrM de *M. lini* (Dodds *et al.*, 2004; Catanzariti *et al.*, 2006) e AvrL1 de *Leptosphaeria maculans* (Gout *et al.*, 2006).

Quando comparou-se as sequências amplificadas do DNA genômico, com as sequências de cDNA, verificou-se que quatro dos cinco genes analisados possuem íntrons e os sítios de junção íntron-éxons que seguem o padrão GT/AG, e seu tamanho variou de 61 a 196 pb. Os íntrons participam ativamente na evolução de genes e possuem diversas funções, como por exemplo, fontes de RNA não codificador, transportadores de elementos reguladores da transcrição, atores no *splicing* alternativo e *trans-splicing*, promotores (*enhancers*) de recombinação meiótica no interior de sequências codificadoras, substratos para éxon *shuffling*, e sinais de exportação de mRNA do núcleo e degradação de RNA mediada por codões non-sense (*non sense-mediated decay*) (Federova & Federov, 2003). Todavia, a importância dos íntrons nos fungos causadores de ferrugens é desconhecida. Todos os clones de cDNA correpondentes a cada um dos genes caracterizados foram completamente sequenciados e comparados com a sequência genômica caracterizada. Nenhuma evidência de *splicing* alternativo foi obtida.

Como a similaridade entre a maioria dos efetores de fungos com proteínas presentes em bancos públicos é limitada, não foi possível atribuir funções aos candidatos a efetores selecionados e caracterizados. As proteínas deduzidas desses genes caracterizados não apresentaram similaridade com proteínas de *Puccinia graminis* f. sp. *tritici* e de *Melampsora larici-populina* depositadas nos seus respectivos bancos de dados, indicando tratar-se portanto de proteínas exclusivas de *H. vastatrix*. A elevada taxa de evolução molecular observada em efetores como um resultado de mutações e seleção causa extensiva diversificação de sequências, expansão de genes, e outros rearranjos nos genes que codificam efetores, o que poderiam explicar a ausência de homologia entre proteínas efetoras e as suas

especificidades a diferentes patógenos (Stergiopoulos & de Wit, 2009; Jolly *et al.*, 2010). Muitos genes efetores estão localizados em áreas altamente dinâmicas do genoma, tais como as extremidades do cromossomo ou em regiões ricas em elementos transponíveis que sofrem rearranjos genômicos frequentes, permitindo assim maior variabilidade genética e facilidade de suplantar a resistência mediada por genes *R* (Stergiopoulos & de Wit, 2009). Em muitos desses casos, o ganho de virulência devido a inserções de transposons, deleções do gene, e outros rearranjos genéticos tem sido frequentemente observados (Stergiopoulos & de Wit, 2009).

A comparação das sequências dos cinco genes caracterizados mais detalhadamente neste trabalho, assim como dos demais genes que codificam proteínas secretadas identificados, com sequências de cDNAs únicas derivados de esporos, demonstrou que esses genes são expressos no interior do tecido infectado. Estudos de expressão e imunolocalização deverão ser efetuados para demonstrar se esses genes são expressos exclusivamente nos haustórios. Adicionalmente, estudos funcionais deverão ser executados para comprovar a função da atividade efetora dos genes selecionados. Todavia, estudos funcionais em H. vastatrix ainda são um desafio, por vários motivos. Primeiro, essa ferrugem não possui ciclo de vida completo (Fernandes et al., 2009), o que dificulta estudos genéticos visando estabelecer a ligação gênica entre candidatos a genes efetores e genes de avirulência. Segundo, ainda não foi desenvolvido um protocolo de transformação desse fungo. Além disso, por se tratar de um parasita obrigatório, tanto a transformação e a seleção dos transformantes devem ser efetuadas in vivo, no próprio cafeeiro. Terceiro, estudos de inativação gênica, associado à ausência de ciclo completo, são dificultados pela natureza dicariótica predominante no ciclo de vida do fungo. Assim, caso seja desenvolvido um sistema de transformação, os estudos funcionais podem ser melhor executados com base na interferência de RNA (iRNA), como demonstrado recentemente para *M. lini* (Lawrence et al., 2010).

Uma estratégia promissora para os estudos funcionais é a expressão transiente mediada por *Agrobacterium tumefaciens* (Van der Hoorn *et al.*, 2000). Muitas proteínas efetoras são reconhecidas por proteínas de resistência polimórficas do hospedeiro e assim podem ser identificadas em bioensaios como moléculas que desencadeiam respostas dependentes de proteína R do hospedeiro, como a morte

celular (reação de hipersensibilidade ou HR), quando expressas dentro ou direcionadas para o interior das células hospedeiras (Shan et al., 2004; Vleeshouwers et al., 2008). Essa técnica foi utilizada com sucesso na identificação de genes de avirulência em M. lini (Dodds et al., 2004; Dodds et al., 2006). Uma outra alternativa seria a translocação dessas proteínas para dentro das células vegetais pelo sistema de secreção tipo III de fitobactérias. Esse sistema foi usado com sucesso na identificação de proteínas Avr do oomiceto Hyaloperonospora parasitica por Sohn et al. (2007) e Rentel et al. (2008). As proteínas são expressas como proteínas fusionadas com os sinais N-terminais de secreção-translocação dos efetores bacterianos AvrRpm1 (Rentel et al., 2008) ou AvrRps4 (Sohn et al., 2007) e translocados para células de arabidopsis por Pseudomonas syringae pv. tomato. O fato do cafeeiro ser suscetível a Pseudomonas syringae pv. garcae, agente etiológico da mancha aureolada do cafeeiro (Godoy et al., 1997), demonstra ser possível utilizar os vetores desenvolvidos por Rentel et al. (2008) e Sohn et al. (2007) para estudos funcionais dos genes que codificam proteínas secretadas identificados nesse trabalho no cafeeiro. Neste particular é extremamente relevante o fato de ter sido utilizado um isolado de H. vastatrix pertencente à raça 2. Esse isolado é virulento somente em genótipos resistentes de cafeeiro contendo o fator S_H5. Desta forma, os métodos de expressão temporária descritos anteriormente nos demais genótipos da série diferenciadora do CIFC poderão permitir a identificação de vários genes de avirulência de H. vastatrix.

6. CONCLUSÃO

Em conclusão, por meio das análises de bioinformática de um banco de etiquetas de sequências expressas (ESTs) construído pelo sequenciamento de cDNA de uma interação *H. vastatrix* - cafeeiro suscetível, foi possível identificar genes pressupostamente derivados do patógeno que codificam proteínas secretadas durante a sua interação com o cafeeiro. Cinco genes foram selecionados, completamente sequenciados e amplificados a partir de DNA de *H. vastatrix* comprovando a sua origem fúngica. A secreção das proteínas codificadas por quatro dos cinco genes selecionados foi confirmada em levedura. Estudos funcionais deverão ser realizados para comprovar a atividade efetora dos genes caracterizados assim como dos demais genes identificados nesse estudo, cuja origem fúngica e secreção das proteínas preditas em levedura seja demonstrada.

7. REFERÊNCIAS BIBLIOGRÁFICAS

AGRIOS, G. N. Plant Pathology. 5ed. London: Elsevier, 922p, 2004.

- BETTENCOURT A.J., RODRIGUES JR. C.J. Principles and practice of coffee breeding for resistance to rust and other diseases. *In*: (Clarke, R. J., Macrae, R. Eds.). London and New York: Coffee Agronomy,199-234, 4v. Elsevier Applied Science, 1988.
- BLOCK, A., LI,.G., FU, Z.Q., ALFANO, J.R. Phytopathogen type III effector weaponry and their plant targets. Current Opinion in Plant Biology, 11: 396-403, 2008.
- BOWEN, J.K.; MESARICH, C.H.; RESS-GEORGE, J.; CUI, W.; FITZGERALD, A.; WIN, J.; PLUMMER, K.M.; TEMPLETON, M.D. Candidate effector gene identification in the ascomycete fungal phytopathogen *Venturia inaequalis* by expressed sequence tag analysis. Molecular Plant Pathology, 10(3): 431- 448, 2009.
- CABRAL, P. G. C., ZAMBOLIM, E.M., ZAMBOLIM, L., LELIS, T. P., CAPUCHO, A. S., CAIXETA, E. T. Identification of a new race of *Hemileia vastatrix* in Brazil. Australasian Plant Disease Notes, 4: 129–130, 2009.
- CAPUCHO, A. S. Herança e mapeamento de QTLs da resistência do híbrido de Timor à ferrugem do cafeeiro. 2008. 62f. Dissertação (Mestrado em Fitopatologia). Universidade Federal de Viçosa, Viçosa, MG, 2008.
- CAPUCHO, A. S., CAIXETA, E. T., ZAMBOLIM, E. M., ZAMBOLIM, L. Herança da resistência do Híbrido de Timor UFV 443-03 à ferrugem-do-cafeeiro. Pesquisa Agropecuária Brasileira, 44 (3): 276-282, 2009.
- CARVALHO C.H. Cultivares de café. Origem, características e recomendações. Consórcio Brasileiro de Pesquisa e Desenvolvimento do café CBP&D/Café. Embrapa Café. Brasília, DF.334 p., 2008.
- CATANZARITI, A. M., DODDS, P. N., VE, T., KOPE, B., ELLIS, J. G., STASKAWICZ, B. J. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the resistance protein. Molecular Plant-Microbe Interactions, 23:49-57, 2010.
- CATANZARITI, A.M., DODDS, P. N., LAWRENCE, G. J., AYLIFFE, M. A., ELLIS, J. G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. The Plant Cell, 18:243-256, 2006.
- CATANZARITI, A.M., DODDS, P.N., ELLIS. J.G. Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters, 269:181–188, 2007

DAVIS, E.L., HUSSEY, R.S., MITCHUM, M.G., BAUM, T.J. Parasitism proteins in nematode-

plant interactions. Current Opinion in Plant Biology, 11: 360-366, 2008.

- DE WIT, P. J. G. M., MEHRABI, R., VAN DEN BURG, H. A., STERGIOPOULOS, I., Review Fungal effector proteins: past, present and future. Molecular Plant Pathology, 10:735–747, 2009.
- DIATCHENKO, L., LAU, Y. F., CAMPBELL, A. P., CHENCHIK, A., MOQADAM, F., HUANG,
 B., LUKYANOV, S., LUKYANOV, K., GURSKAYA, N., SVBERDLOV, E. D., SIEBERT,
 P. D. Suppression subtractive hybridization: A method for generation differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences of the United States of America, 93: 6025-6030, 1996.
- DINIZ, I. I. P. DOS S. Respostas celulares e moleculares em interacções hospedeiras e não hospedeiras cafeeiro-ferrugem (*Hemileia vastatrix* e *Uromyces vignae*). 2010. 75 f. Dissertação (Mestrado em Engenharia Agronômica) - Instituto Superior de Agronomia -Universidade Técnica de Lisboa, Lisboa, Portugal, 2010.
- DODDS, P.N., LAWRENCE, G.J., CATANZARITI, A.M., AYLIFFE, M.A., ELLIS, J.G. The *Melampsora lini AvrL567* avirulence genes are expressed in haustoria and their products are recognized inside plant cells. Plant Cell, 16: 755–768, 2004.
- DODDS, P.N., LAWRENCE, G.J., CATANZARITI, A.M., TEH, T., WANG, C.I.A., AYLIFFE, M.A., KOBE, B., ELLIS, J.G. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences of the United States of America, 103:8888–8893, 2006.
- DODDS, P.N., RAFIQI, M., GAN, P. H. P., HARDHAM, A. R., JONES, D. A., ELLIS, E.G. Effectors of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. New Phytologist, 183: 993–1000, 2009.
- ELLIS, J.G., LAWRENCE, G.J., DODDS, P.N., Further analysis of gene-for-gene disease resistance specificity in flax. Molecular Plant Pathology, 8:103–109, 2007.
- FEDEROVA, L., FEDEROV, A. Introns in gene evolution. Genetica, 118: 123-131, 2003.
- FERNANDES, R. DE C., EVANS, H. C., BARRETO, R. W. Confirmation of the occurrence of teliospores of *Hemileia vastatrix* in Brazil with observations on their mode of germination. Tropical Plant Pathology, 34(2): 108-113, 2009.
- FLOR, H.H. The complementary genic systems in flax and flax rust. Advanced Genetics, 8:29–54, 1956.
- GODOY, C. V., BERGAMIN FILHO, A., SALGADO, C. L. Doenças do Cafeeiro. In: (Kimati, H., Amorim, L., Bergamin Filho, A., Camargo, L.E.A. Rezende, J. A.M. Eds.) Manual de Fitopatologia. Volume 2: Doenças das Plantas Cultivadas. Agronômica Ceres. São

Paulo, 178-192.1997.

- GOUT, L., FUDAL, I., KUHN, M.L., BLAISE, F., ECKERT, M., CATTOLICO, L., BALESDENT, M.H., ROUXEL, T. Lost in the middle of nowhere: the *AvrLm1* avirulence gene of the Dothideomycete *Leptosphaeria maculans*. Molecular Microbiology, 60: 67– 80, 2006.
- HEATH, M. C. Signaling between pathogenic rust fungi and resistant or susceptible host plants. Annals of Botany, 80: 713-720, 1997.
- HOGENHOUT, S. A., va der Hoorn, R. A., Terauchi, R., Kamoun, S. Emerging concepts in effector biology of plant associated organisms. Molecular Plant-Microbe Interactions, 22:115-122, 2009.
- HOUTERMAN, P.M., MA, L., VAN OOIJEN, G., DE VROOMEN, M.J., CORNELISSEN, B.J.C., TAKKEN, F.L.W., REP, M. The effector protein Avr2 of the xylem-colonizing fungus *Fusarium oxysporum* activates the tomato resistance protein I-2 intracellularly. Plant Journal, 58:970–978, 2009.
- JACOBS, K. A., A genetic selection for isolating cDNA encoding secreted proteins. Genes, 198:289-296, 1997.
- JIA, Y., MCADAMS, S.A., BRYAN, G.T., HERSHEY, H.P. AND VALENT, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal, 19:4004–4014, 2000.
- JOLY, D. L., FEAU, N. TANGUAY, P., HAMELIN, R. C. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (*Melampsora* spp.). BMC Genomics, 11: 422, 2010.
- KAMOUN S. Groovy times: filamentous pathogen effectors revealed. Current Opinion in Plant Biology,10:358–365, 2007.
- KEMEN, E., KEMEN, A. C., RAFIQI, M., HEMPEL, U., MENDGEN, K., HAHN, M., VOEGELE, R. T. Identification of o protein from rust fungi transferred from haustoria into infected plant cells. Molecular Plant-Microbe Interactions, 18: 1130-1139, 2005.
- KIRK, P. M., CANNON, P. F., MINTER, D. W., STALPERS, H. A. (Eds). Dictionary of the fungi. 10 th. CABI Publishing, 784, 2008.
- LAWRENCE, G. J., DODDS, P. N., ELLIS, J. G. Transformation of the flax rust, *Melampsora lini*: selection via silencing of an avirulence gene. The Plant Journal, 61:364-369, 2010.
- LEE, S.J., KELLEY, B. S., DAMASCENO, C. M. B., JOHN, B. S., KIM, B.S., KIM, B.D., ROSE, J. K. C. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Molecular Plant-Microbe Interactions, 19:1368-

1377, 2006.

- LINK, T. I. AND VOEGELE, R. T. Secreted proteins of *Uromyces fabae*: similarities and stage specificity. Molecular Plant Pathology, 9 (1): 59–66, 2008.
- LOPES, U.P., COSTA, D.R., ZAMBOLIM, L. Ferrugem do café: como controlar. Revista Cultivar Grandes Culturas, 117: 36-38, 2009.
- MAIA, T. A. Análise da Estrutura Genética da População de *Hemileia vastatrix* com Base no Marcador AFLP. 2009. 38f. Dissertação (Mestrado em Fitopatologia) Universidade Federal de Viçosa, Viçosa, MG, 2009.
- MAPA Ministério da Agricultura, Pecuária e Abastecimento. Disponível em: < http://www.agricultura.gov.br/portal/page/portal/Internet-MAPA/pagina-inicial/vegetal/culturas/cafe Acesso em 18 de Janeiro de 2011.
- MATIELLO, J. B., ALMEIDA, S. R. A Ferrugem do Cafeeiro no Brasil e seu Controle. MAPA/PROCAFÉ. 98p. 2006.
- MCCOOK, S. Global rust belt: *Hemileia vastatrix* and the ecological integration of world coffee production since 1850. Journal of Global History, 1: 177-195. 2006
- MENDGEN, K., HAHN, M. Plant infection and the establishment of fungal biotrophy. Review Trends in Plant Science, 1-5, 2002.
- MENNE, K.M., HERMJAKOB, H., APWEILER, R. A comparison of signal sequence prediction methods using a test set of signal peptides. Bioinformatics, 16:741–742, 2000.
- NIELSEN, H., BRUNAK, S., VON HEIJNE, G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Engineering, 12:3–9, 1999.
- O'CONNELL, R.J., PANSTRUGA, R. Te⁻te⁻te⁻te inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 171:699–718, 2006.
- PANSTRUGA, R., DODDS, P. N. Terriffic proteins traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science, 324:748-750, 2009.
- RAMIRO, D.A., ESCOUTE, J., PETITOT, A.-S., NICOLE, M., MALUF, M.P., FERNANDEZ, D. Biphasic haustorial differentiation of coffee rust (*Hemileia vastatrix* race II) associated with defence responses in resistant and susceptible coffee cultivars. Plant Pathology, 58: 944-955, 2009.
- RENTEL, M. C., LEONELLI, L., DAHLBECK, D., ZHAO, B., STASKAWICZ, B. J. Recognition of the *Hyaloperonospora parasitica* effector ATR13 triggers resistance against

oomycete, bacterial, and viral pathogens. Proceedings of the National Academy of Sciences of the United States of America, 105: 1091-1096, 2008.

- REP, M. Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiology Letters, 253: 19-27, 2005.
- RIDOUT, C. J.; SKAMNIOTI, P.; PORRITT, O.; SACRISTAN, S.; JONES, J. D.; BROWN, J.K. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell, 18: 2402-2414, 2006.
- ROCHA, C. de M. Identificação de genes expressos na interação compatível cafeeiro -*Hemileia vastatrix* por meio do sequenciamento de biblioteca de cDNA. 2010. 68f. Tese (Doutorado em Fitopatologia) – Universidade Federal de Viçosa, Viçosa, MG, 2010.
- RODRIGUES JR. C.J., BETTENCOURT, A.J., RIJO L. Races of the pathogen and resistance to coffee rust. Annual Review Phytopathology, 13:49-70. 1975.
- RODRIGUES JR., C.J. Coffee Rusts: history, taxonomy, morphology, distribution and host resistance. Fitopatologia Brasileira, 15:5-9, 1990.
- SCHNEIDER, G., FECHNER, U. Advances in the prediction of protein targeting signals. Proteomics, 4:1571–1580, 2004.
- SHAN, W.X., CAO, M., DAN, L.U. AND TYLER, B.M. The Avr1b locus of *Phytophthora sojae* encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Molecular Plant–Microbe Interactions, 17: 394–403, 2004.
- SHEN, Q.H., SAIJO, Y., MAUCH, S., BISKUP, C., BIERI, S., KELLER, B., SEKI, H., ULKER, B., SOMSSICH, I.E., SCHULZE-LEFERT, P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science, 315: 1098–1103. 2007.
- SILVA, M.C., VÁRZEA, V., GUERRA-GUIMARÃES, L., AZINHEIRA, H.G., FERNANDEZ, D., PETITOT, A.S., BERTRAND, B., LASHERMES, P., NICOLE, M. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology 18: 119-147. 2006.
- SOHN, J., VOEGELE, R. T., MENDGEN, K., HAHN, M. High level activation of vitamin B1 biosynthesis genes in haustoria of the rust fungus *Uromyces fabae*. Molecular Plant-Microbe Interactions, 13: 629-636, 2000.
- SOHN, K. H., LEI, R., NEMRI, A., JONES, J. D. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in *Arabidopsis thaliana*. Plant Cell, 19: 4077-4090, 2007.

STERGIOPOULOS, I., DE WIT, P. J. G. M. Fungal Effector Proteins. Annual Review of

Phytopathology, 47:233-63, 2009.

- TEMPLETON, M.D., RIKKERINK, E.H.A., BEEVER, R.E. Small, cysteine-rich proteins and recognition in fungal-plant interactions. Molecular Plant-Microbe Interactions, 7: 320–325, 1994.
- TORTO, T. A., LI, S., STYER, A., HUITEMA, E., TESTA, A., GOW, N.A., VAN WEST, P., KAMOUN, S. EST mining and functional expression assays identify extracellular effector proteins from *Phytophthora*. Genome Research, 13:1675–1685, 2003.
- VAN DEN BURG, H. A.; HARRISON, S. J.; JOOSTEN, M. H. A. J.; VERVOORT, J.; DE WIT, P. J. G. M. *Cladosporium fulvum* Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant-Microbe Interactions, 19: 1420–1430, 2006.
- VAN DER HOORN, R.A.L.; LAURENT, F.; ROTH, R.; DE WIT, P.J.G.M. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Molecular Plant-Microbe Interactions, 13 (4): 439-446, 2000.
- VAN DER VOSSEN, H. A. M. State-of-the-art of developing durable resistance to biotrophic pathogens in crop plants, Such as coffee leaf rust. *In*: Durable resistance to coffee leaf rust. (Zambolim L., Zambolim, E. M., Várzea, V. M. P., Eds.). Universidade Federal de Viçosa, Brasil, 1 - 30, 2005.
- VÁRZEA V. M. P., RODRIGUES JR. C. J., SILVA M. C., GOUVEIA M., MARQUES D. V., GUERRA-GUIMARÃES, L., RIBEIRO A. Resistência do cafeeiro a *Hemileia vastatrix In*: O estado da arte da tecnologiana produção de café. (Zambolim L., Ed.). Universidade Federal de Viçosa, Brasil, 270-320,2002.
- VÁRZEA V.M.P., MARQUES D.V., PEREIRA A.P., SILVA M.C. The use of Sarchimor derivatives in coffee breeding for resistance to leaf rust. *In:* Proceedings of the 22nd International Conference on Coffee Science, 14 19 September 2008. Brazil.1424-1429p.
- VÁRZEA, V. M. P., MARQUES, D.V. Population variability of *Hemileia vastatrix* vs. coffee durable resistance. *In*: Durable Resistance to Coffee Leaf Rust (L Zambolim, EM Zambolim, VMP Várzea, Eds).Universaidade Federal de Viçosa, Brasil, 53–74, 2005.
- VLEESHOUWERS, V.G.A.A., RIETMAN, H., KRENEK, P., CHAMPOURET, N., YOUNG, C., OH, S.-K., WANG, M., BOUWMEESTER, K., VOSMAN, B., VISSER, R.G.F., JACOBSEN, E., GOVERS, F., KAMOUN, S. AND VAN DER VOSSEN, E.A.G. Effector genomics accelerates discovery and functional profiling of potato disease resistance and *Phytophthora infestans* avirulence genes. PLoS One, 3, e2875, 2008.
- VOEGELE, R. T., HAHN, M., LOHAUS, G., LINK, T., HEISER, I., MENDGEN, K. Possible roles for mannitol and mannitol dehidrogenase in the biotrophic plant pathogen

Uromyces fabae. Plant Physiology, 137: 190-198, 2005.

- VOEGELE, R.T & MENDGEN, K. Rust haustoria: nurient uptake and beyond. New Phytologist, 159: 93-100, 2003.
- YIN, C., HULBERT, S. Prospects for functional analysis of effectors from cereal rust fungi. Euphytica, 2010. DOI10.1007/s10681-010-0285-x (*in press*).
- ZAMBOLIM, L., ZAMBOLIM, E. M., CAIXETA, E. T., JESUS JUNIOR, W. C. Características rastreáveis do manejo integrado das doenças do cafeeiro. *In:* Rastreabilidade para a cadeia produtiva do café. (Zambolim, L. Ed.). Universidade Federal de Viçosa, Brasil, 85-128, 2007.
- ZAMBOLIM, L., ZAMBOLIM, E. M., DO VALE, F. X. R., PEREIRA, A. A., SAKYAMA, N. S., CAIXETA. Physiological races of *Hemileia vastatrix* Beerk. Et Br. In Brazil – Physiological variability, current situation and future prospects. *In*: Durable resistance to coffee leaf rust. (Zambolim L., Zambolim, E. M., Várzea, V. M. P., Eds.). Universidade Federal de Viçosa, Brasil, 75-98, 2005.
- ZAMBOLIM, L., ZAMBOLIM, E. M., DO VALE, F. X. R., PEREIRA, A. A., CHAVES, G. M. Manejo integrado das doenças do cafeeiro. *In:* Produção de café com qualidade (Zambolim, L. Ed.). Universidade Federal de Viçosa, Brasil, 134-215, 1999.

8. ANEXO

Tabela 1: Resumo dos atributos de seleção dos genes candidatos a efetores da biblioteca de cDNA da interação *Hemileia vastatrix* – *Coffea* sp. pelo algoritmo BlastN e BlastX.

	Tomonko	BlastN		BlastX		
Contiguo / Singleto	(bp)	Acesso Descrição	E- Acesso value	Descrição	E- value	Organismo ¹
Contig 4	489	NO HIT		NO HIT		
Contig 13	1088	NO HIT		NO HIT		
Contig 16	524	NO HIT		NO HIT		
Contig 17	613	NO HIT	ref XP_381414.1	60S ribosomal protein L36 (TRP36) [Gibberella zeae]	1e-20	F
Contig 21	918	NO HIT	ref XP_001873384.1	predicted protein [Laccaria bicolor]	6e-34	F
Contig 30	582	NO HIT		NO HIT		
Contig 36	339	NO HIT		NO HIT		
Contig 39	960	NO HIT	ref XP_759516.1	hypothetical protein [Ustilago maydis]	3e-19	F
Contig 41	774	NO HIT	ref XP_759071.1	hypothetical protein [Ustilago maydis]	3e-40	F
Contig 43	143	NO HIT		NO HIT		
Contig 44	203	NO HIT		NO HIT		
Contig 45	871	NO HIT	ref XP_003030677.1	hypothetical protein [Schizophyllum commune]	3e-42	F
Contig 47	609	NO HIT	ref XP_001880663.1	aspartic peptidase A1 [Laccaria bicolor]	2e-17	F
Contig 57	431	NO HIT		NO HIT		
Contig 58	952	NO HIT		NO HIT		
Contig 60	632	NO HIT	sp Q9UVF8.1 THI4_UROFA	Thiazole biosynthetic enzyme, Precursor HI2p [Uromyces viciae-fabae]	3e-72	F
Contig 65	532	NO HIT	ref XP_002281103.1	similar to predicted protein [Vitis vinifera]	2e-08	Р
Contig 66	369	NO HIT		NO HIT		
Contig 67	82	NO HIT		NO HIT		
Contig 78	557	NO HIT		NO HIT		
Contig 79	612	NO HIT	sp O00058.1 MTDH_UROFA	NADP-dependent mannitol dehydrogenase;PIG8 [Uromyces viciae-fabae]	2e-66	F
Contig 80	646	NO HIT		NO HIT		
Contig 83	495	NO HIT	ref XP_002473344.1	predicted protein [Postia placenta]	8e-15	F
Contig 84	768	NO HIT		NO HIT		
Contig 87	499	NO HIT		NO HIT		
Contig 91	130	NO HIT		NO HIT		
Contig 93	464	NO HIT	ref XP_001350490.2	conserved Plasmodium protein [Plasmodium falciparum]	2e-06	OUT
Contig 95	566	NO HIT	ref XP_002333733.1	predicted protein [Populus trichocarpa]	5e-48	Р
Contig 96	298	NO HIT		NO HIT		
Contig 98	207	NO HIT	emb CBI30571.3	unnamed protein product [Vitis vinifera]	4e-14	Р

Contig 113	534	NO HIT		NO HIT		
Contig 115	470	NO HIT	tpe CBF76862.1	TPA: COX1 assembly protein Shy1, putative [Aspergillus nidulans]	2e-05	F
Contig 120	605	NO HIT	ref XP_001880688.1	predicted protein [Laccaria bicolor]	1e-34	F
Contig 123	1104	NO HIT	ref XP_002393287.1	hypothetical protein [Moniliophthora perniciosa]	1e-10	F
Contig 125	608	NO HIT	ref XP_001273513.1	phosphoglycerate mutase family protein, putative [Aspergillus clavatus]	3e-13	F
Contig 130	549	NO HIT		NO HIT		
Contig 134	378	NO HIT	sp O00058.1 MTDH_UROFA	NADP-dependent mannitol dehydrogenase;PIG8 [Uromyces viciae-fabae]	3e-31	F
Contig 140	507	NO HIT		NO HIT		
Contig 145	604	NO HIT	ref XP_001382603.2	hypothetical protein [Scheffersomyces stipitis]	3e-46	F
Contig 147	430	NO HIT	dbj BAA22288.1	polyprotein [Oryza australiensis]	1e-12	Р
Contig 153	663	NO HIT	emb CBI27082.3	unnamed protein product [Vitis vinifera]	4e-80	Р
Contig 156	660	NO HIT	ref XP_761011.1	hypothetical protein [Ustilago maydis]	4e-32	F
Contig 162	660	NO HIT		NO HIT		
Contig 168	940	NO HIT		NO HIT		
Contig 169	481	NO HIT		NO HIT		
Contig 176	603	NO HIT	ref XP_003037297.1	hypothetical protein [Schizophyllum commune]	8e-39	F
Contig 180	583	NO HIT	ref XP_002281103.1	similar to predicted protein [Vitis vinifera]	2e-10	Р
Contig 184	683	NO HIT	ref XP_001874079.1	predicted protein [Laccaria bicolor]	4e-14	F
Contig 188	632	NO HIT		NO HIT		
Contig 192	488	NO HIT		NO HIT		
Contig 194	677	NO HIT	ref XP_001877197.1	20S proteasome subunit [Laccaria bicolor]	1e-80	F
Contig 197	800	NO HIT	ref XP_003028981.1	hypothetical protein [Schizophyllum commune]	1e-97	F
Contig 209	616	NO HIT	ref XP_503594.1	YALI0E05643p [Yarrowia lipolytica]	7e-33	F
Contig 219	249	NO HIT		NO HIT		
Contig 220	628	NO HIT	ref XP_001216543.1	conserved hypothetical protein [Aspergillus terreus]	4e-07	F
Contig 222	574	NO HIT		NO HIT		
Contig 225	544	NO HIT		NO HIT		
Contig 228	441	NO HIT	ref XP_002911694.1	40s ribosomal protein [Coprinopsis cinerea okayama]	1e-17	F
Contig 235	675	NO HIT		NO HIT		
Contig 237	578	NO HIT		NO HIT		
Contig 239	1157	NO HIT	ref XP_001840251.1	peroxidase TAP [Coprinopsis cinerea okayama]	8e-72	F
Contig 241	576	NO HIT		NO HIT		
Contig 251	586	NO HIT	emb CBI26676.3	unnamed protein product [Vitis vinifera]	3e-25	Р
Contig 252	597	NO HIT	ref XP_003036747.1	hypothetical protein [Schizophyllum commune]	8e-22	F
Contig 257	277	NO HIT		NO HIT		
Contig 263	342	NO HIT		NO HIT		
Contig 265	1112	NO HIT		NO HIT		
Contig 268	954	NO HIT		NO HIT		
Contig 274	660	NO HIT	emb CAN64170.1	hypothetical protein [Vitis vinifera]	2e-11	Р
Contig 279	708	NO HIT		NO HIT		

Contig 282	334	NO HIT		NO HIT		
Contig 297	431	NO HIT		NO HIT		
Contig 300	304	NO HIT		NO HIT		
Contig 306	449	NO HIT		NO HIT		
Contig 313	234	NO HIT		NO HIT		
Contig 315	571	NO HIT	ref XP_001877809.1	predicted protein [Laccaria bicolor]	4e-71	F
Contig 319	758	NO HIT	gb ABK96247.1	unknown [Populus trichocarpa x Populus deltoides]	1e-36	Р
Contig 320	331	NO HIT		NO HIT		
Contig 327	523	NO HIT		NO HIT		
Contig 329	506	NO HIT	ref XP_761979.1	hypothetical protein [Ustilago maydis]	2E-12	F
Contig 330	526	NO HIT		NO HIT		
Contig 335	535	NO HIT		NO HIT		
Contig 339	615	NO HIT		NO HIT		
Contig 347	499	NO HIT	ref XP_003036468.1	hypothetical protein [Schizophyllum commune]	8e-06	F
Contig 349	450	NO HIT	ref XP_567374.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	3e-10	F
Contig 352	585	NO HIT		NO HIT		
Contig 358	653	NO HIT	emb CBI34486.3	unnamed protein product [Vitis vinifera]	1e-83	Р
Contig 360	731	NO HIT		NO HIT		
Contig 363	588	NO HIT	ref XP_002390339.1	hypothetical protein [Moniliophthora perniciosa]	1e-44	F
Contig 374	411	NO HIT	ref XP_002266716.1	hypothetical protein [Vitis vinifera]	2e-11	Р
Contig 378	393	NO HIT		NO HIT		
Contig 381	632	NO HIT	ref XP_758923.1	hypothetical protein [Ustilago maydis]	5e-55	F
Contig 383	421	NO HIT		NO HIT		
Contig 385	375	NO HIT	ref XP_001386819.1	GAL4 enhancer protein [Scheffersomyces stipitis]	7e-08	F
Contig 399	651	NO HIT	ref XP_001873807.1	predicted protein [Laccaria bicolor]	5e-62	F
Contig 401	210	NO HIT		NO HIT		
Contig 405	674	NO HIT		NO HIT		
Contig 411	583	NO HIT	ref XP_001730827.1	hypothetical protein [Malassezia globosa]	3e-80	F
Contig 416	178	NO HIT		NO HIT		
Contig 423	567	NO HIT	pdb 3FP5 A	Chain A, Crystal Structure Of Acbp From Moniliophthora Perniciosa	3e-13	F
Contig 428	595	NO HIT		NO HIT		
Contig 439	603	NO HIT		NO HIT		
Contig 451	342	NO HIT		NO HIT		
Contig 453	782	NO HIT		NO HIT		
Contig 460	845	NO HIT	ref XP_001829437.1	enolase [Coprinopsis cinerea okayama]	1e-106	F
Contig 462	540	NO HIT	ref XP_001835917.1	40s ribosomal protein s20 [Coprinopsis cinerea okayama]	8e-47	F
Contig 465	639	NO HIT	gb AAZ81592.1	Hav2 [Nicotiana tabacum]	5e-34	Р
Contig 471	712	NO HIT		NO HIT		
Contig 477	226	NO HIT		NO HIT		
Contig 479	245	NO HIT		NO HIT		

Contig 487	490	NO HIT		NO HIT		
Contig 499	586	NO HIT	ref XP_002280958.1	hypothetical protein [Vitis vinifera]	3e-44	Р
Contig 500	617	NO HIT	ref XP_761564.1	hypothetical protein UM05417.1 [Ustilago maydis 521]	6e-15	F
Contig 506	1166	NO HIT	sp O00057.1 NMT1_UROFA	Planta-induced rust protein 1IG1 [Uromyces viciae-fabae]	1e-136	F
Contig 507	268	NO HIT		NO HIT		
Contig 516	387	NO HIT		NO HIT		
Contig 518	621	NO HIT	ref XP_003038484.1	40S ribosomal protein [Schizophyllum commune]	5e-39	F
Contig 523	590	NO HIT	ref XP_568101.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	3e-37	F
Contig 530	664	NO HIT	emb CAN60336.1	hypothetical protein [Vitis vinifera]	1e-25	Р
Contig 532	252	NO HIT		NO HIT		
Contig 533	691	NO HIT	ref XP_001633203.1	predicted protein [Nematostella vectensis]	3e-12	OUT
Contig 537	812	NO HIT		NO HIT		
Contig 539	978	NO HIT	ref XP_003029996.1	hypothetical protein [Schizophyllum commune]	1e-84	F
Contig 545	498	NO HIT	ref XP_756628.1	hypothetical protein [Ustilago maydis]	2e-20	F
Contig 550	426	NO HIT		NO HIT		
Contig 560	545	NO HIT	emb CAD47882.1	hypothetical protein [Arthrobacter nicotinovorans]	2e-04	OUT
Contig 561	619	NO HIT	gb ABS86407.1	rust transferred protein [Melampsora occidentalis]	4e-11	F
Contig 562	572	NO HIT	gb ADI16936.1	hypothetical protein [unculturecluster bacterium]	4e-07	OUT
Contig 564	593	NO HIT		NO HIT		
Contig 565	161	NO HIT	ref XP_762177.1	hypothetical protein [Ustilago maydis]	5e-07	F
Contig 566	182	NO HIT		NO HIT		
Contig 569	517	NO HIT		NO HIT		
Contig 573	671	NO HIT		NO HIT		
Contig 586	500	NO HIT		NO HIT		
Contig 589	573	NO HIT	emb CAN67523.1	hypothetical protein [Vitis vinifera]	2e-24	Р
Contig 592	392	NO HIT		NO HIT		
Contig 595	344	NO HIT		NO HIT		
Contig 598	607	NO HIT		NO HIT		
Contig 602	627	NO HIT		NO HIT		
Contig 605	668	NO HIT		NO HIT		
Contig 612	765	NO HIT	ref XP_001878145.1	phytase [Laccaria bicolor]	3e-72	F
Contig 615	632	NO HIT		NO HIT		
Contig 616	480	NO HIT				
Contig 627	527	NO HIT		NO HIT		
Contig 630	568	NO HIT	ref XP_001829388.2	hypothetical protein[Coprinopsis cinerea okayama]	1e-06	F
Contig 640	160	NO HIT		NO HIT		
Contig 641	720	NO HIT		NO HIT		
Contig 646	766	NO HIT	ref XP_001907846.1	hypothetical protein [Podospora anserina S mat+]	1e-09	F
Contig 650	325	NO HIT		NO HIT		
Contig 651	222	NO HIT		NO HIT		

Contig 657	91	NO HIT		NO HIT		
Contig 664	264	NO HIT		NO HIT		
Contig 665	557	NO HIT		NO HIT		
Contig 683	197	NO HIT		NO HIT		
Contig 684	702	NO HIT	ref XP_001828774.1	hypothetical protein [Coprinopsis cinerea okayama]	9e-17	F
Contig 687	273	NO HIT		NO HIT		
Contig 688	576	NO HIT		NO HIT		
Contig 695	83	NO HIT		NO HIT		
Contig 720	438	NO HIT		NO HIT		
Contig 721	723	NO HIT		NO HIT		
Contig 726	519	NO HIT		NO HIT		
Contig 729	730	NO HIT		NO HIT		
Contig 740	698	NO HIT	ref XP_568570.1	phosphoglucomutase [Cryptococcus neoformans var. neoformans]	2e-55	F
Contig 762	478	NO HIT	gb ACL97386.1	Gag-Pol polyprotein [Medicago truncatula]	2e-04	Р
Contig 765	383	NO HIT	ref XP_640518.2	COBW domain-containing protein [Dictyostelium discoideum]	6e-04	OUT
Contig 767	289	NO HIT		NO HIT		
Contig 768	602	NO HIT		NO HIT		
Contig 776	539	NO HIT	ref XP_001935731.1	60S ribosomal protein L37a [Pyrenophora tritici-repentis]	4e-27	F
Contig 779	651	NO HIT	ref XP_001833989.1	elongation factor 1 beta/delta chain [Coprinopsis cinerea okayama]	1e-35	F
Contig 782	435	NO HIT		NO HIT		
Contig 786	259	NO HIT		NO HIT		
Contig 787	562	NO HIT	gb ABU41922.1	hypothetical protein [Dactylellina haptotyla]	2e-27	F
Contig 791	521	NO HIT		NO HIT		
Contig 792	409	NO HIT	ref XP_002314569.1	predicted protein [Populus trichocarpa]	7e-19	Р
Contig 796	358	NO HIT	sp Q9UVF8.1 THI4_UROFA	Thiazole biosynthetic enzyme, mitochondrial; [Uromyces viciae-fabae]	4e-16	F
Contig 799	538	NO HIT		NO HIT		
Contig 800	546	NO HIT		NO HIT		
Contig 813	701	NO HIT	ref XP_001879756.1	predicted protein [Laccaria bicolor]	2e-31	F
Contig 816	705	NO HIT		NO HIT		
Contig 817	563	NO HIT		NO HIT		
Contig 820	387	NO HIT	ref XP_001216808.1	conserved hypothetical protein [Aspergillus terreus]	7e-10	F
Contig 821	449	NO HIT	ref XP_002510598.1	conserved hypothetical protein [Ricinus communis]	1e-13	Р
Contig 831	788	NO HIT	ref XP_002475553.1	40S ribosomal protein S23 [Postia placenta]	6e-66	F
Contig 838	315	NO HIT		NO HIT		
Contig 852	721	NO HIT	ref XP_003036919.1	hypothetical protein [Schizophyllum commune]	3e-26	F
Contig 856	397	NO HIT	ref XP_002886079.1	GCIP-interacting family protein [Arabidopsis lyrata subsp. Lyrata]	7e-06	Р
Contig 863	428	NO HIT		NO HIT		
Contig 877	594	NO HIT	ref XP_001837230.1	hypothetical protein [Coprinopsis cinerea okayama]	5e-28	F
Contig 880	571	NO HIT		NO HIT		
Contig 881	507	NO HIT		NO HIT		

Contig 896	258	NO HIT		NO HIT		
Contig 897	423	NO HIT		NO HIT		
Contig 898	624	NO HIT	ref XP_003037896.1	hypothetical protein [Schizophyllum commune]	2e-60	F
Contig 900	729	NO HIT		NO HIT		
Contig 914	818	NO HIT		NO HIT		
Contig 929	575	NO HIT		NO HIT		
Contig 968	222	NO HIT		NO HIT		
Contig 971	972	NO HIT		NO HIT		
Contig 972	972	NO HIT		NO HIT		
Contig 973	554	NO HIT		NO HIT		
Contig 980	725	NO HIT		NO HIT		
Contig 987	622	NO HIT	gb ABS86534.1	60S acidic ribosomal protein P1 [Melampsora medusae f. sp. Deltoidis]	6e-22	F
Contig 995	1005	NO HIT	ref XP_001877481.1	predicted protein [Laccaria bicolor]	2e-91	F
Contig 1001	936	NO HIT		NO HIT		
Contig 1002	397	NO HIT	ref XP_002275817.1	hypothetical protein [Vitis vinifera]	2e-22	Р
CAHV_CD_01_001_A09	437	NO HIT	dbj BAD93181.1	isocitrate lyase [Fomitopsis palustris]	1e-53	F
CAHV_CD_01_001_B12	389	NO HIT	ref XP_777983.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	2e-39	F
CAHV_CD_01_001_C01	12	NO HIT		NO HIT		
CAHV_CD_01_001_C09	417	NO HIT		NO HIT		
CAHV_CD_01_001_G04	320	NO HIT		NO HIT		
CAHV_CD_01_002_A02	560	NO HIT		NO HIT		
CAHV_CD_01_002_B02	534	NO HIT	dbj BAD01553.1	FK506 binding protein [Malassezia pachydermatis]	1e-30	F
CAHV_CD_01_002_B06	199	NO HIT		NO HIT		
CAHV_CD_01_002_B09	329	NO HIT	ref XP_003038065.1	hypothetical protein [Schizophyllum commune]	2e-31	F
CAHV_CD_01_002_B12	555	NO HIT	ref XP_002910914.1	RING finger membrane protein [Coprinopsis cinerea okayama]	4e-06	F
CAHV_CD_01_002_C01	403	NO HIT	ref XP_003004062.1	hypothetical protein [Verticillium albo-atrum VaMs.]	9e-08	F
CAHV_CD_01_002_C04	334	NO HIT		NO HIT		
CAHV_CD_01_002_C07	334	NO HIT	ref XP_569066.1	histone h2b [Cryptococcus neoformans var. neoformans]	5e-07	F
CAHV_CD_01_002_D05	113	NO HIT		NO HIT		
CAHV_CD_01_002_D10	260	NO HIT	ref XP_002336468.1	predicted protein [Populus trichocarpa]	2e-04	Р
CAHV_CD_01_002_D12	445	NO HIT		NO HIT		
CAHV_CD_01_002_E05	594	NO HIT	ref XP_002282028.1	hypothetical protein [Vitis vinifera]	2e-98	Р
CAHV_CD_01_002_F03	247	NO HIT		NO HIT		
CAHV_CD_01_002_F04	21	NO HIT		NO HIT		
CAHV_CD_01_002_H06	12	NO HIT		NO HIT		
CAHV_CD_01_003_A02	16	NO HIT		NO HIT		
CAHV_CD_01_003_A11	11	NO HIT		NO HIT		
CAHV_CD_01_003_A12	25	NO HIT		NO HIT		
CAHV_CD_01_003_C01	214	NO HIT		NO HIT		
CAHV_CD_01_003_D04	280	NO HIT		NO HIT		

CAHV_CD_01_003_E08	407	NO HIT		NO HIT		
CAHV_CD_01_003_F02	399	NO HIT		NO HIT		
CAHV_CD_01_003_G03	430	NO HIT	ref XP_759502.1	hypothetical protein [Ustilago maydis]	6e-21	F
CAHV_CD_01_003_G09	516	NO HIT		NO HIT		
CAHV_CD_01_003_H10	499	NO HIT		NO HIT		
CAHV_CD_01_004_A03	495	NO HIT		NO HIT		
CAHV_CD_01_004_B06	280	NO HIT		NO HIT		
CAHV_CD_01_004_D01	373	NO HIT		NO HIT		
CAHV_CD_01_004_D05	261	NO HIT		NO HIT		
CAHV_CD_01_004_E02	473	NO HIT	dbj BAB88943.1	protein phosphatase 2C [Mesembryanthemum crystallinum]	4e-52	Р
CAHV_CD_01_004_E08	44	NO HIT		NO HIT		
CAHV_CD_01_004_F02	471	NO HIT	ref YP_003289415.1	Alpha, alpha-trehalase [Rhodothermus marinus]	9e-08	OUT
CAHV_CD_01_004_F05	456	NO HIT	ref XP_002910225.1	translation initiation factor elF3g [Coprinopsis cinerea okayama]	2e-17	F
CAHV_CD_01_004_G03	531	NO HIT	ref XP_570901.1	hypothetical protein [Cryptococcus neoformans var. neoformans JEC21]	9e-32	F
CAHV_CD_01_004_G12	26	NO HIT		NO HIT		
CAHV_CD_01_004_H11	450	NO HIT	ref XP_002275255.1	hypothetical protein [Vitis vinifera]	5e-22	Р
CAHV_CD_01_005_A02	19	NO HIT		NO HIT		
CAHV_CD_01_005_B07	395	NO HIT	ref XP_001750075.1	hypothetical protein [Monosiga brevicollis]	3e-34	F
CAHV_CD_01_005_B11	18	NO HIT		NO HIT		
CAHV_CD_01_005_C03	427	NO HIT		NO HIT		
CAHV_CD_01_005_C06	324	NO HIT		NO HIT		
CAHV_CD_01_005_C10	534	NO HIT		NO HIT		
CAHV_CD_01_005_D02	532	NO HIT	gb AAP42832.1	chitinase [Puccinia triticina]	1e-34	F
CAHV_CD_01_005_G01	294	NO HIT		NO HIT		
CAHV_CD_01_005_G06	366	NO HIT		NO HIT		
CAHV_CD_01_006_D05	103	NO HIT		NO HIT		
CAHV_CD_01_006_D10	535	NO HIT	ref XP_001877913.1	predicted protein [Laccaria bicolor]	1e-40	F
CAHV_CD_01_006_E01	532	NO HIT		NO HIT		
CAHV_CD_01_006_E02	547	NO HIT	emb CBI15603.3	unnamed protein product [Vitis vinifera]	1e-63	Р
CAHV_CD_01_006_F06	434	NO HIT		NO HIT		
CAHV_CD_01_006_F10	433	NO HIT		NO HIT		
CAHV_CD_01_006_G07	202	NO HIT		NO HIT		
CAHV_CD_01_006_H02	575	NO HIT		NO HIT		
CAHV_CD_01_006_H10	359	NO HIT		NO HIT		
CAHV_CD_01_007a_E05	20	NO HIT		NO HIT		
CAHV_CD_01_007a_G01	16	NO HIT		NO HIT		
CAHV_CD_01_007a_H10	12	NO HIT		NO HIT		
CAHV_CD_01_007b_E05	20	NO HIT		NO HIT		
CAHV_CD_01_007b_G01	16	NO HIT		NO HIT		
CAHV_CD_01_007b_H10	12	NO HIT		NO HIT		

CAHV_CD_01_008_A05	149	NO HIT		NO HIT		
CAHV_CD_01_008_B05	528	NO HIT		NO HIT		
CAHV_CD_01_008_C02	509	NO HIT	ref XP_571302.1	UDP-N-acetylglucosamine diphosphorylase [Cryptococcus neoformans var. neoformans]	4e-44	F
CAHV_CD_01_008_C10	385	NO HIT		NO HIT		
CAHV_CD_01_008_D10	516	NO HIT	ref XP_001837426.1	NADH-ubiquinone oxidoreductase 23 kDa subunit [Coprinopsis cinerea okayama]	5e-45	F
CAHV_CD_01_008_E11	319	NO HIT	ref XP_002154236.1	similar to predicted protein [Hydra magnipapillata]	4e-07	OUT
CAHV_CD_01_008_G02	193	NO HIT		NO HIT		
CAHV_CD_01_008_H03	13	NO HIT		NO HIT		
CAHV_CD_01_008_H12	163	NO HIT		NO HIT		
CAHV_CD_01_009_A10	401	NO HIT	ref XP_570563.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	1e-10	F
CAHV_CD_01_009_B03	590	NO HIT		NO HIT		
CAHV_CD_01_009_D03	426	NO HIT		NO HIT		
CAHV_CD_01_009_E04	386	NO HIT	ref XP_001874079.1	predicted protein [Laccaria bicolor]	3e-08	F
CAHV_CD_01_009_G03	426	NO HIT		NO HIT		
CAHV_CD_01_010_A04	500	NO HIT		NO HIT		
CAHV_CD_01_010_A07	405	NO HIT		NO HIT		
CAHV_CD_01_010_A09	19	NO HIT		NO HIT		
CAHV_CD_01_010_B02	566	NO HIT	ref XP_002530672.1	calmodulin binding protein, putative [Ricinus communis]	6e-11	Р
CAHV_CD_01_010_C07	363	NO HIT	gb EFN57022.1	hypothetical protein [Chlorella variabilis]	8e-15	OUT
CAHV_CD_01_010_E11	11	NO HIT		NO HIT		
CAHV_CD_01_010_E12	231	NO HIT		NO HIT		
CAHV_CD_01_010_F05	17	NO HIT		NO HIT		
CAHV_CD_01_011_A05	590	NO HIT	ref XP_001832373.1	hypothetical protein [Coprinopsis cinerea okayama]	5e-19	F
CAHV_CD_01_011_A11	344	NO HIT		NO HIT		
CAHV_CD_01_011_A12	21	NO HIT		NO HIT		
CAHV_CD_01_011_B03	472	NO HIT	ref YP_003306015.1	RNA-directed DNA polymerase [Streptobacillus moniliformis]	1e-18	OUT
CAHV_CD_01_011_B09	303	NO HIT		NO HIT		
CAHV_CD_01_011_C07	357	NO HIT		NO HIT		
CAHV_CD_01_011_D09	11	NO HIT		NO HIT		
CAHV_CD_01_011_E12	12	NO HIT		NO HIT		
CAHV_CD_01_011_F11	578	NO HIT	gb ACZ04323.1	neuronal calcium sensor protein [Puccinia striiformis]	4e-90	F
CAHV_CD_01_011_H04	290	NO HIT		NO HIT		
CAHV_CD_01_012_A02	554	NO HIT	ref XP_569417.1	ATP synthase [Cryptococcus neoformans var. neoformans]	1e-32	F
CAHV_CD_01_012_A06	11	NO HIT		NO HIT		
CAHV_CD_01_012_B03	304	NO HIT		NO HIT		
CAHV_CD_01_012_C05	471	NO HIT	ref XP_002173064.1	NatB N-acetyltransferase complex catalytic subunit Nat3 [Schizosaccharomyces japonicus]	3e-31	F
CAHV_CD_01_012_G03	575	NO HIT	ref XP_002512226.1	transcription factor, putative [Ricinus communis]	4e-16	Р
CAHV_CD_01_012_G04	12	NO HIT		NO HIT		
CAHV_CD_01_012_H04	574	NO HIT	ref XP_570337.1	adenosylhomocysteinase [Cryptococcus neoformans var. neoformans]	9e-68	F
CAHV_CD_01_013_A04	140	NO HIT		NO HIT		

CAHV_CD_01_013_B01	491	NO HIT		NO HIT			
CAHV_CD_01_013_C10	386	NO HIT		NO HIT			
CAHV_CD_01_013_D01	12	NO HIT		NO HIT			
CAHV_CD_01_013_D09	550	NO HIT	gb ACU20725.1	unknown [Glycine max]	2e-04	Р	
CAHV_CD_01_013_E01	510	NO HIT		NO HIT			
CAHV_CD_01_013_G10	522	NO HIT	ref XP_002520450.1	hypothetical protein [Ricinus communis]	2e-19	Р	
CAHV_CD_01_014_A05	49	NO HIT		NO HIT			
CAHV_CD_01_014_B06	595	NO HIT	ref XP_002525000.1	conserved hypothetical protein [Ricinus communis]	2e-51	F	
CAHV_CD_01_014_C04	21	NO HIT		NO HIT			
CAHV_CD_01_014_C08	237	NO HIT		NO HIT			
CAHV_CD_01_014_D10	20	NO HIT		NO HIT			
CAHV_CD_01_014_D11	369	NO HIT	emb CAN83015.1	hypothetical protein [Vitis vinifera]	4e-05	Р	
CAHV_CD_01_014_E05	11	NO HIT		NO HIT			
CAHV_CD_01_014_F08	127	NO HIT		NO HIT			
CAHV_CD_01_014_G03	540	NO HIT	ref XP_001644101.1	hypothetical protein [Vanderwaltozyma polyspora]	2e-08	F	
CAHV_CD_01_014_G10	599	NO HIT	ref XP_002326441.1	predicted protein [Populus trichocarpa]	2e-24	Р	
CAHV_CD_01_014_H06	559	NO HIT	gb ACU19192.1	unknown [Glycine max]	2e-15	Р	
CAHV_CD_01_014_H11	13	NO HIT		NO HIT			
CAHV_CD_01_015_B01	502	NO HIT	ref XP_002521601.1	Chitin-inducible gibberellin-responsive protein, putative [Ricinus communis]	2e-23	Р	
CAHV_CD_01_015_E12	463	NO HIT		NO HIT			
CAHV_CD_01_015_G09	525	NO HIT	ref XP_003034482.1	hypothetical protein [Schizophyllum commune]	3e-07	F	
CAHV_CD_01_016_A01	432	NO HIT		NO HIT			
CAHV_CD_01_016_A11	480	NO HIT	ref XP_761045.1	hypothetical protein [Ustilago maydis]	4e-32	F	
CAHV_CD_01_016_B10	313	NO HIT		NO HIT			
CAHV_CD_01_016_C04	82	NO HIT		NO HIT			
CAHV_CD_01_016_C05	305	NO HIT	ref XP_002388706.1	hypothetical protein [Moniliophthora perniciosa]	1e-15	F	
CAHV_CD_01_016_C09	542	NO HIT	emb CBI39431.3	unnamed protein product [Vitis vinifera]	2e-38	Р	
CAHV_CD_01_016_D02	558	NO HIT	ref XP_001880762.1	predicted protein [Laccaria bicolor]	5e-17	F	
CAHV_CD_01_016_D05	578	NO HIT		NO HIT			
CAHV_CD_01_016_E08	561	NO HIT	ref XP_002515266.1	conserved hypothetical protein [Ricinus communis]	3e-61	Р	
CAHV_CD_01_016_H08	355	NO HIT		NO HIT			
CAHV_CD_01_016_H12	496	NO HIT		NO HIT			
CAHV_CD_01_017_B01	361	NO HIT	ref XP_001878235.1	expansin family protein [Laccaria bicolor]	2e-14	F	
CAHV_CD_01_017_B10	13	NO HIT		NO HIT			
CAHV_CD_01_017_D09	530	NO HIT		NO HIT			
CAHV_CD_01_017_F05	11	NO HIT		NO HIT			
CAHV_CD_01_017_F10	438	NO HIT		NO HIT			
CAHV_CD_01_017_F11	18	NO HIT		NO HIT			
CAHV_CD_01_017_F12	11	NO HIT		NO HIT			
CAHV_CD_01_017_G01	552	NO HIT	ref XP_001831399.2	arp2/3 complex 34 kDa subunit [Coprinopsis cinerea okayama]	6e-36	F	
CAH/. CD. 0.1017. H03 523 NO HT ref(RP. 002313678.11) Prodiced protein (Populate tinchcarpa) 2-15 CAHV. CD. 0.1018. A11 22 NO HT NO HT NO HT CAHV. CD. 0.1018. A11 22 NO HT NO HT NO HT CAHV. CD. 0.1018. A11 22 NO HT NO HT NO HT CAHV. CD. 0.1018. B12 22 NO HT NO HT NO HT CAHV. CD. 0.1018. B12 22 NO HT NO HT NO HT CAHV. CD. 0.1018. C01 11 NO HT NO HT NO HT CAHV. CD. 0.1018. C03 18 NO HT ref(XP_00329275.1] hypothetical protein [Usingo mayding 1-32 CAHV. CD. 0.1018. C05 169 NO HT ref(XP_00329275.1] hypothetical protein [Usingo mayding 1-32 CAHV. CD. 0.1018. C05 169 NO HT Ref(XP_00101618.66) 169 NO HT CAHV. CD. 0.1018. A03 52 NO HT Ref(XP_00101618.66) 16.07 CAHV. CD. 0.1018. A03 52 NO HT Ref(XP_00101618.66) 16.07	CAHV_CD_01_017_G04	399	NO HIT		NO HIT		
--	---------------------	-----	--------	--------------------	--	-------	-----
CAHW, CD, 01,017, H06 541 NO HT CAHW, CD, 01,018, A03 52 NO HT NO HT CAHW, CD, 01,018, A07 12 NO HT NO HT CAHW, CD, 01,018, A07 12 NO HT NO HT CAHW, CD, 01,018, B07 12 NO HT NO HT CAHW, CD, 01,018, B07 12 NO HT NO HT CAHW, CD, 01,018, B07 13 NO HT NO HT CAHW, CD, 01,018, C08 18 NO HT NO HT CAHW, CD, 01,018, D76 54 NO HT NO HT CAHW, CD, 01,018, C08 18 NO HT NO HT CAHW, CD, 01,018, C08 56 NO HT NO HT CAHW, CD, 01,018, C08 57 NO HT NO HT CAHW, CD, 01,018, B05 47 NO HT NO HT CAHW, CD, 01,018, B05 52 NO HT NO HT CAHW, CD, 01,018, B05 52 NO HT NO HT CAHW, CD, 01,018, B05 52 NO HT NO HT CAHW, CD, 01,018, B05 52 NO	CAHV_CD_01_017_H03	523	NO HIT	ref XP_002313979.1	predicted protein [Populus trichocarpa]	2e-15	Р
CAHW_CD.01.018.A1H 252 NO HT NO HT CAHW_CD.01.018.A1H 22 NO HT NO HT CAHW_CD.01.018.B12 43 NO HT NO HT CAHW_CD.01.018.C01 14 NO HT NO HT CAHW_CD.01.018.C03 36 NO HT NO HT NO HT CAHW_CD.01.018.C03 57 NO HT NO HT NO HT CAHW_CD.01.018.C03 513 NO HT NO HT NO HT CAHW_CD.01.0198.B03 52 NO HT NO HT NO HT CAHW_CD.01.0198.B03 52 NO HT RefXP_D 010 HIS REFXPHIME	CAHV_CD_01_017_H06	541	NO HIT		NO HIT		
CAHW.CD.0.1018_AD7 22 NO HIT NO HIT CAHW.CD.0.1018_B07 2 NO HIT NO HIT CAHW.CD.0.1018_B120 22 NO HIT NO HIT CAHW.CD.0.1018_B07 18 NO HIT NO HIT CAHW.CD.0.1018_D08 188 NO HIT NO HIT CAHW.CD.0.1018_D08 443 NO HIT NO HIT CAHW.CD.0.1018_D08 56 NO HIT NO HIT CAHW.CD.0.1018_D08 57 NO HIT NO HIT CAHW.CD.0.1018_D08 58 NO HIT NO HIT CAHW.CD.0.1018_D08 59 NO HIT NO HIT CAHW.CD.0.1018_D08 23 NO HIT NO HIT CAHW.CD.0.1018_D08 23 NO HIT NO HIT CAHW.CD.0.1018_D08 247 NO HIT NO HIT CAHW.CD.0.1018_D08 51 NO HIT REGVENT CAHW.CD.0.1018_D08 51 NO HIT REGVENT CAHW.CD.0.1018_D08 51 NO HIT REGVENT CAHW.CD.0.10198_D07 52	CAHV_CD_01_018_A03	512	NO HIT		NO HIT		
CAHW.CD.01.018.B172 12 NO HIT NO HIT CAHW.CD.01.018.B172 22 NO HIT NO HIT CAHW.CD.01.018.C01 11 NO HIT NO HIT CAHW.CD.01.018.C03 18 NO HIT RCHAURADA CAHW.CD.01.018.C03 443 NO HIT ref[XP_003028275.1] hypothetical protein [Schaucophylium commune] 7e-16 CAHW.CD.01.018.F07 54 NO HIT ref[XP_760370.1] hypothetical protein [Schaucophylium commune] 7e-16 CAHW.CD.01.018.F08 52 NO HIT ref[XP_760370.1] hypothetical protein [Schaucophylium commune] 7e-16 CAHW.CD.01.018.G05 515 NO HIT NO HIT NO HIT NO HIT CAHW.CD.01.0198.G07 12 NO HIT ref[XP_567407.1] clathrin heavy chain 1C/pylacoccus neoformans var. neoformans] 1e-07 CAHW.CD.01.0198.G08 437 NO HIT ref[XP_507407.1] clathrin heavy chain 1C/pylacoccus neoformans var. neoformans] 1e-07 CAHW.CD.01.0198.G08 512 NO HIT ref[XP_507407.1] Clathrin heavy chain 1C/pylacoccus neoformans var. neoformans] 1e-07	CAHV_CD_01_018_A11	22	NO HIT		NO HIT		
CAHV, CD, 01, 018, 012 22 NO HIT NO HIT CAHV, CD, 01, 018, 020 18 NO HIT NO HIT CAHV, CD, 01, 018, 020 188 NO HIT ref CAHV, CD, 01, 018, 020 443 NO HIT ref CAHV, CD, 01, 018, 703 54 NO HIT ref CAHV, CD, 01, 018, 703 54 NO HIT ref CAHV, CD, 01, 018, 703 54 NO HIT ref CAHV, CD, 01, 018, 703 54 NO HIT ref CAHV, CD, 01, 018, 703 54 NO HIT ref CAHV, CD, 01, 018, 703 53 NO HIT ref CAHV, CD, 01, 018, 802 23 NO HIT ref CAHV, CD, 01, 018, 803 32 NO HIT ref CAHV, CD, 01, 018, 803 32 NO HIT ref CAHV, CD, 01, 018, 803 32 NO HIT ref CAHV, CD, 01, 018, 803 32 NO HIT ref CAHV, CD, 01, 018, 803 32 NO HIT ref CAHV, CD, 01, 018, 803	CAHV_CD_01_018_B07	12	NO HIT		NO HIT		
CAHW_CD_01018_008 11 NO HIT NO HIT CAHV_CD_01018_008 188 NO HIT ref/XP_003029275.1] hypothetical protein [Schzophyllum commune] 7e-16 CAHV_CD_01018_1670 366 NO HIT ref/XP_003029275.1] hypothetical protein [Schzophyllum commune] 7e-16 CAHV_CD_01018_1670 544 NO HIT ref/XP_003029275.1] hypothetical protein [Schzophyllum commune] 1e-32 CAHV_CD_01018_1670 544 NO HIT ref/XP_00101618201800 1e-32 CAHV_CD_01018_063 577 NO HIT ref/XP_00101918_003 1e-32 CAHV_CD_010198_063 547 NO HIT ref/XP_00101918_051 547 NO HIT CAHV_CD_010198_063 547 NO HIT ref/XP_0010191857.1] clashrin heavy chain 1 [Cryptococcus neoformans var. neoformans) 1e-07 CAHV_CD_010198_063 547 NO HIT ref/XP_0010191857.1] Clashrin heavy chain 1 [Cryptococcus neoformans var. neoformans) 1e-07 CAHV_CD_010198_063 515 NO HIT ref/XP_00191857.1] Clashrin heavy chain 1 [Cryptococcus neoformans var. neoformans var. neoformans var. neoformans var. neoformans var. neoformans var.	CAHV_CD_01_018_B12	22	NO HIT		NO HIT		
CAHV, CD, 0118, D04 188 ND HIT (FIXP_003023275.1) Npothetical protein [Schizophyllux commue] 7a-16 CAHV, CD, 01, 018, D04 306 NO HIT (No HIT NO HIT	CAHV_CD_01_018_C01	11	NO HIT		NO HIT		
CAHV_CD_01_018_F03 443 NO HIT ref(XP_00324275.1] hypothetical protein [Uschizophyllum commune] 7e-16 CAHV_CD_01_018_F07 644 NO HIT ref(XP_760370.1] hypothetical protein [Uschizophyllum commune] 1e-32 CAHV_CD_01_018_F07 644 NO HIT ref(XP_760370.1] hypothetical protein [Uschizophyllum commune] 1e-32 CAHV_CD_01_018_F07 645 NO HIT NO HIT 1e-32 CAHV_CD_01_018_F07 645 NO HIT NO HIT 1e-32 CAHV_CD_01_018_F07 12 NO HIT NO HIT 1e-07 CAHV_CD_01_019a_B03 322 NO HIT ref(XP_567407.1] Caltrin heavy chain 1[Cryptocaccus neoformans var. neoformans] 1e-07 CAHV_CD_01_019a_D05 640 NO HIT ref(XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_D05 15 NO HIT ref(XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_D05 15 NO HIT NO HIT CAHV_CD_01_019a_D05 15 NO HIT CAHV_CD_01_019a_D05 16 NO HIT CAHV_	CAHV_CD_01_018_C08	188	NO HIT		NO HIT		
CAHV_CD_01_018_F07 54 N0 HIT ref[XP_760370.1] hypothetical protein [Ustingo mayle] 19-32 CAHV_CD_01_018_F08 527 N0 HIT N0 H	CAHV_CD_01_018_D04	443	NO HIT	ref XP_003029275.1	hypothetical protein [Schizophyllum commune]	7e-16	F
CAHV_CD_01_018_F07 544 N0 HIT ref(XP_760370.1] hypothetical protein [Ustilago maydis] 1e-32 CAHV_CD_01_018_F08 527 N0 HIT N	CAHV_CD_01_018_F03	306	NO HIT		NO HIT		
CAHW_CD_01_018_005 527 N0 HIT N0 HIT CAHW_CD_01_018_005 159 N0 HIT N0 HIT CAHW_CD_01_019_8_007 12 N0 HIT N0 HIT CAHW_CD_01_019a_807 23 N0 HIT N0 HIT CAHW_CD_01_019a_805 232 N0 HIT N0 HIT CAHW_CD_01_019a_805 487 N0 HIT ref[XP_567407.1] Clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 1e-07 CAHW_CD_01_019a_024 50 N0 HIT ref[XP_001971857.1] Clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 4e-08 CAHW_CD_01_019a_024 51 N0 HIT ref[XP_001971857.1] GG14210 [Drosophia erecta] 4e-08 CAHW_CD_01_019a_050 51 N0 HIT N0 HIT N0 HIT CAHW_CD_01_019a_104 216 N0 HIT CAHW_CD_01_019a_104 211 N0 HIT CAHW_CD_01_019a_104 231 N0 HIT CAHW_CD_01_019a_104 231 N0 HIT CAHW_CD_01_020_104 36 N0 HIT N0 HIT N0 HIT CAHW_CD_01_020_104 36 N0 HIT N0 HIT N0 HIT N0	CAHV_CD_01_018_F07	544	NO HIT	ref XP_760370.1	hypothetical protein [Ustilago maydis]	1e-32	F
CAHV_CD_01_018_060 159 NO HIT CAHV_CD_01_018_02 23 NO HIT NO HIT CAHV_CD_01_019a_03 322 NO HIT NO HIT CAHV_CD_01_019a_03 322 NO HIT CathV_CD_01_019a_03 160 CAHV_CD_01_019a_03 487 NO HIT ref XP_567407.1] clathrin heavy chain 1 [Cryptocccus neoformans var. neoformans) 1e07 CAHV_CD_01_019a_0204 500 NO HIT ref XP_567407.1] Clathrin heavy chain 1 [Cryptoccus neoformans var. neoformans) 4e-08 CAHV_CD_01_019a_0204 500 NO HIT ref XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_0205 512 NO HIT ref XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_0205 512 NO HIT ref XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_0205 512 NO HIT ref XP_001971857.1] NO HIT CAHV_CD_01_0198_020 291 NO HIT CAHV_CD_01_0198_020 291 NO HIT CAHV_CD_01_020_00 291 NO HIT CAHV_CD_01_021_01016 NO HIT	CAHV_CD_01_018_F08	527	NO HIT		NO HIT		
CAHV_CD_01_019a_070 12 NO HIT CAHV_CD_01_019a_080 23 NO HIT NO HIT CAHV_CD_01_019a_0805 42 NO HIT ref[XP_567407.1] clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 1e-07 CAHV_CD_01_019a_020 460 NO HIT ref[XP_001971857.1] CG14210 [Drosophile arecta] 4e-08 CAHV_CD_01_019a_C07 266 NO HIT ref[XP_001971857.1] CG14210 [Drosophile arecta] 4e-08 CAHV_CD_01_019a_C05 515 NO HIT ref[XP_001971857.1] CG14210 [Drosophile arecta] 4e-08 CAHV_CD_01_019a_D05 515 NO HIT ref[XP_001971857.1] CG14210 [Drosophile arecta] 4e-08 CAHV_CD_01_019a_D05 515 NO HIT NO HIT NO HIT CAHV_CD_01_019a_D03 216 NO HIT CAHV_CD_01_019a_D03 216 NO HIT NO HIT CAHV_CD_01_019a_D03 219 NO HIT CAHV_CD_01_020_C10 340 NO HIT CAHV_CD_01_020_C10 340 NO HIT CAHV_CD_01_020_C10 341 NO HIT CAHV_CD_01_020_C10 341 NO HIT	CAHV_CD_01_018_G05	159	NO HIT		NO HIT		
CAHV_CD_01_019a_B02 23 NO HIT NO HIT CAHV_CD_01_019a_B03 322 NO HIT ref[XP_567407.1] clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 1e.07 CAHV_CD_01_019a_B03 540 NO HIT ref[XP_567407.1] clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 1e.07 CAHV_CD_01_019a_C04 500 NO HIT ref[XP_001971857.1] GG14210 [Drosophila erecta] 4e.08 CAHV_CD_01_019a_C05 512 NO HIT ref[XP_001971857.1] GG14210 [Drosophila erecta] 4e.08 CAHV_CD_01_019a_C05 512 NO HIT ref[XP_001971857.1] NO HIT NO HIT CAHV_CD_01_019a_D05 512 NO HIT ref[XP_001971857.1] NO HIT NO HIT CAHV_CD_01_019a_D05 151 NO HIT ref[XP_00197 Ref[XP_00197 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_00198 Ref[XP_	CAHV_CD_01_019a_A07	12	NO HIT		NO HIT		
CAHV_CD_01_019a_B03 322 NO HIT NO HIT CAHV_CD_01_019a_B03 487 NO HIT ref/XP_567407.1 clathrin heavy chain 1 [Cryptoccus ne oformans var. neoformans] 1-07 CAHV_CD_01_019a_C04 500 NO HIT ref/XP_001971857.1 GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_C07 296 NO HIT ref/XP_001971857.1 GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_C05 512 NO HIT ref/XP_001971857.1 GG14210 [Drosophila erecta] 4e-08 CAHV_CD_01_019a_E05 512 NO HIT NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT CAHV_CD_01_019a_E03 216 NO HIT CAHV_CD_01_019a_E03 216 NO HIT CAHV_CD_01_019a_E03 216 NO HIT CAHV_CD_01_020_C01 319 NO HIT CAHV_CD_01_020_C01 346 NO HIT CAHV_CD_01_020_E07 319 NO HIT emb)CB121835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 319 NO HIT ref/XP_001546914.1 hypothetical protein [Botryotinin fuckeleina] 1e-01 <t< td=""><td>CAHV_CD_01_019a_B02</td><td>233</td><td>NO HIT</td><td></td><td>NO HIT</td><td></td><td></td></t<>	CAHV_CD_01_019a_B02	233	NO HIT		NO HIT		
CAHV_CD_0101918_B05 467 NO HIT ref(XP_567407.1) clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans] 1e-07 CAHV_CD_0101918_C04 540 NO HIT NO HIT NO HIT CAHV NO HIT CAHV_CD_0101918_C04 540 NO HIT CAHV_CD_0101918_C05 540 NO HIT Rectain the avy chain 1 [Cryptococcus neoformans var. neoformans] 4e-08 CAHV_CD_0101918_C05 540 NO HIT ref(XP_001971857.1] GG14210 [Drosophila erecta] 4e-08 CAHV_CD_0101918_C05 515 NO HIT NO HIT NO HIT CAHV_CD_0101918_C05 155 NO HIT NO HIT CAHV_CD_0101918_C03 216 NO HIT NO HIT NO HIT CAHV_CD_0101918_C03 216 NO HIT NO HIT CAHV_CD_01020_C03 319 NO HIT NO HIT NO HIT CAHV_CD_01020_C07 319 NO HIT ref(XP_001546914.1] NO HIT RO HIT CAHV_CD_01020_L07 319 NO HIT ref(XP_001546914.1] NO HIT NO HIT CAHV_CD_01020_L07 319 NO HIT ref(XP_001546914.1] NO HIT NO HIT RO HIT	CAHV_CD_01_019a_B03	322	NO HIT		NO HIT		
CAHV_CD_01_019a_001 540 NO HIT ref(XP_01971857.1] GG14210 [Drosophila erecta] 4e/08 CAHV_CD_01_019a_007 296 NO HIT RO HIT NO HIT NO HIT CAHV_CD_01_019a_005 512 NO HIT NO HIT NO HIT CAHV_CD_01_019a_005 512 NO HIT NO HIT CAHV_CD_01_019a_005 15 NO HIT NO HIT CAHV_CD_01_019a_003 216 NO HIT NO HIT CAHV_CD_01_020_003 355 NO HIT NO HIT CAHV_CD_01_020_003 363 NO HIT NO HIT CAHV_CD_01_020_0107 341 NO HIT MO HIT CAHV_CD_01_020_0107 319 NO HIT emb(CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_101 160 NO HIT ref(XP_001546914.1] No HIT NO HIT 2e-16 CAHV_CD_01_021_4010 521 NO HIT ref(XP_001396739.1] NO HIT <t< td=""><td>CAHV_CD_01_019a_B05</td><td>487</td><td>NO HIT</td><td>ref XP_567407.1 </td><td>clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans]</td><td>1e-07</td><td>F</td></t<>	CAHV_CD_01_019a_B05	487	NO HIT	ref XP_567407.1	clathrin heavy chain 1 [Cryptococcus neoformans var. neoformans]	1e-07	F
CAHV_CD_01_019a_C04 500 NO HIT ref(XP_001971857.1] GG14210 [Drosophila erecta] 4e.08 CAHV_CD_01_019a_C07 266 NO HIT NO HIT NO HIT CAHV_CD_01_019a_E03 512 NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_020_C02 31 NO HIT NO HIT CAHV_CD_01_020_E07 346 NO HIT MO HIT CAHV_CD_01_020_E07 341 NO HIT MO HIT CAHV_CD_01_020_E01 345 NO HIT CAHV_CD_01_020_E01 345 NO HIT CAHV_CD_01_020_E01 345 NO HIT MO HIT CAHV_CD_01_021_E10 353 NO HIT NO HIT	CAHV_CD_01_019a_C01	540	NO HIT		NO HIT		
CAHV_CD_01_019a_C07 296 N0 HIT CAHV_CD_01_019a_D05 512 N0 HIT N0 HIT CAHV_CD_01_019a_D05 512 N0 HIT N0 HIT CAHV_CD_01_019a_E06 15 N0 HIT N0 HIT CAHV_CD_01_019a_E02 216 N0 HIT N0 HIT CAHV_CD_01_019a_H02 321 N0 HIT N0 HIT CAHV_CD_01_020_C08 535 N0 HIT N0 HIT CAHV_CD_01_020_C04 341 N0 HIT N0 HIT CAHV_CD_01_020_C0407 343 N0 HIT M0 HIT CAHV_CD_01_020_H07 343 N0 HIT M0 HIT CAHV_CD_01_020_H07 343 N0 HIT M0 HIT CAHV_CD_01_020_H07 343 N0 HIT M0 HIT CAHV_CD_01_021_H01 15 N0 HIT M0 HIT CAHV_CD_01_021_H01 160 N0 HIT M0 HIT CAHV_CD_01_021_H01 521 N0 HIT M0 HIT CAHV_CD_01_021_H01 533 N0 HIT M0 HIT CAHV_CD_01_021_E03 360	CAHV_CD_01_019a_C04	500	NO HIT	ref XP_001971857.1	GG14210 [Drosophila erecta]	4e-08	OUT
CAHV_CD_01_019a_D05 512 NO HIT CAHV_CD_01_019a_E05 15 NO HIT NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_019a_G03 216 NO HIT NO HIT CAHV_CD_01_019a_G03 216 NO HIT NO HIT CAHV_CD_01_019a_G03 19 NO HIT NO HIT CAHV_CD_01_020_C08 535 NO HIT NO HIT CAHV_CD_01_020_C07 436 NO HIT MO HIT CAHV_CD_01_020_C07 431 NO HIT MO HIT CAHV_CD_01_020_L07 431 NO HIT emb[CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_L01 15 NO HIT ref[XP_001546914.1] hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_L01 15 NO HIT ref[XP_001546914.1] hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_L01 16 NO HIT ref[XP_001396739.1] hypothetical protein [Botryotinia fuckeliana] 3e-21 CAHV_CD_01_021_E03 230	CAHV_CD_01_019a_C07	296	NO HIT		NO HIT		
CAHV_CD_01_019a_E03 15 NO HIT CAHV_CD_01_019a_E03 216 NO HIT NO HIT CAHV_CD_01_019a_E02 321 NO HIT NO HIT CAHV_CD_01_019b_C02 19 NO HIT NO HIT CAHV_CD_01_020_C08 535 NO HIT NO HIT CAHV_CD_01_020_C01 346 NO HIT NO HIT CAHV_CD_01_020_C07 431 NO HIT MO HIT CAHV_CD_01_020_H07 319 NO HIT emb]CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 15 NO HIT ref[XP_001546914.1] NO HIT 1e-04 CAHV_CD_01_021_A01 160 NO HIT ref[XP_001546914.1] NO HIT 1e-04 CAHV_CD_01_021_A01 160 NO HIT ref[XP_001546914.1] NO HIT 1e-04 CAHV_CD_01_021_B01 33 NO HIT NO HIT 1e-04 CAHV_CD_01_021_B01 33 NO HIT NO HIT NO HIT CAHV_CD_01_021_B03 366 NO HIT ref[XP_00136739.1] No	CAHV_CD_01_019a_D05	512	NO HIT		NO HIT		
CAHV_CD_01_019a_G03 216 NO HIT CAHV_CD_01_019a_G03 216 NO HIT NO HIT CAHV_CD_01_019a_G03 221 NO HIT NO HIT CAHV_CD_01_019b_C02 19 NO HIT NO HIT CAHV_CD_01_020_C08 535 NO HIT NO HIT CAHV_CD_01_020_C10 346 NO HIT NO HIT CAHV_CD_01_020_D07 431 NO HIT MO HIT CAHV_CD_01_020_H07 319 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 15 NO HIT ref XP_001546914.1 hypothetical protein [Botryotina fuckeliana] 1e-16 CAHV_CD_01_021_A01 160 NO HIT ref XP_001546914.1 hypothetical protein [Botryotina fuckeliana] 1e-16 CAHV_CD_01_021_A01 521 NO HIT ref XP_00136739.1 hypothetical protein [Aspergillus niger] 3e-21 CAHV_CD_01_021_E03 306 NO HIT emb CBI27953.3 unnamed protein roduct [Vitis vinifera] 3e-22 CAHV_CD_01_021_F03 564 NO HIT emb CBI2	CAHV_CD_01_019a_E05	15	NO HIT		NO HIT		
CAHV_CD_01_019a_H02 321 NO HIT CAHV_CD_01_019b_C02 19 NO HIT NO HIT CAHV_CD_01_020_C08 535 NO HIT NO HIT CAHV_CD_01_020_C10 346 NO HIT NO HIT CAHV_CD_01_020_C07 343 NO HIT MO HIT CAHV_CD_01_020_D07 431 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 319 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_021_A01 160 NO HIT ref XP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A01 521 NO HIT ref XP_001396739.1 NO HIT NO HIT CAHV_CD_01_021_B01 33 NO HIT ref XP_001396739.1 hypothetical protein [Aspegillus niger] 3e-21 CAHV_CD_01_021_E03 230 NO HIT ref XP_001396739.1 hypothetical protein [Aspegillus niger] 3e-21 CAHV_CD_01_021_E03 364 NO HIT ref XP_00230631.1 predicted protein [Populus trichcoarap]<	CAHV_CD_01_019a_G03	216	NO HIT		NO HIT		
CAHV_CD_01_019b_C02 19 N0 HIT N0 HIT CAHV_CD_01_020_C08 535 N0 HIT N0 HIT CAHV_CD_01_020_C10 346 N0 HIT N0 HIT CAHV_CD_01_020_D07 431 N0 HIT N0 HIT CAHV_CD_01_020_D07 431 N0 HIT emb CBI21835.3 unnamed protein product [Vits vinifera] 2e-16 CAHV_CD_01_020_H07 319 N0 HIT emb CBI21835.3 unnamed protein product [Vits vinifera] 2e-16 CAHV_CD_01_020_H07 15 N0 HIT emb CBI21835.3 unnamed protein product [Vits vinifera] 2e-16 CAHV_CD_01_021_A01 160 N0 HIT ref XP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A01 521 N0 HIT ref XP_001366914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_B10 33 N0 HIT ref XP_001396739.1 hypothetical protein [Botryotinia fuckeliana] 3e-21 CAHV_CD_01_021_E03 230 N0 HIT ref XP_001396739.1 hypothetical protein product [Vitis vinifera] 3e-21 <t< td=""><td>CAHV_CD_01_019a_H02</td><td>321</td><td>NO HIT</td><td></td><td>NO HIT</td><td></td><td></td></t<>	CAHV_CD_01_019a_H02	321	NO HIT		NO HIT		
CAHV_CD_01_020_C08 535 NO HIT CAHV_CD_01_020_C10 346 NO HIT NO HIT CAHV_CD_01_020_D07 431 NO HIT NO HIT CAHV_CD_01_020_H07 319 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 15 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H10 15 NO HIT reflXP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A01 160 NO HIT reflXP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A01 521 NO HIT reflXP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A03 33 NO HIT NO HIT NO HIT 1e-04 CAHV_CD_01_021_E03 306 NO HIT reflXP_001396739.1 hypothetical protein [Aspergillus niger] 3e-21 CAHV_CD_01_021_E03 564 NO HIT emb CBI27953.3 unnamed protein product [Vitis vinifera] 3e-22	CAHV_CD_01_019b_C02	19	NO HIT		NO HIT		
CAHV_CD_01_020_C10 346 NO HIT CAHV_CD_01_020_D07 431 NO HIT NO HIT CAHV_CD_01_020_H07 319 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H07 15 NO HIT emb CBI21835.3 unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H10 15 NO HIT emb CBI21835.3 NO HIT NO HIT CAHV_CD_01_021_A01 160 NO HIT ref XP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A10 521 NO HIT ref XP_001546914.1 hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A10 521 NO HIT NO HIT NO HIT CAHV_CD_01_021_B10 33 NO HIT NO HIT NO HIT CAHV_CD_01_021_E03 230 NO HIT ref XP_001396739.1 hypothetical protein [Aspergillus niger] 3e-22 CAHV_CD_01_021_E01 564 NO HIT emb CBI27953.3 unnamed protein product [Vitis vinifera] 3e-22 CAHV_CD_01_021_F09<	CAHV_CD_01_020_C08	535	NO HIT		NO HIT		
CAHV_CD_01_020_D07 431 NO HIT NO HIT CAHV_CD_01_020_H07 319 NO HIT emb[CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H10 15 NO HIT mb[CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H10 15 NO HIT ref[XP_001546914.1] hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_A10 521 NO HIT ref[XP_001546914.1] hypothetical protein [Botryotinia fuckeliana] 1e-04 CAHV_CD_01_021_B10 33 NO HIT NO HIT NO HIT NO HIT CAHV_CD_01_021_B03 306 NO HIT ref[XP_001396739.1] hypothetical protein [Aspergillus niger] 3e-21 CAHV_CD_01_021_E03 230 NO HIT ref[XP_001396739.1] hypothetical protein [Aspergillus niger] 3e-22 CAHV_CD_01_021_E10 564 NO HIT emb]CBI27953.3] unnamed protein product [Vitis vinifera] 3e-22 CAHV_CD_01_021_F09 496 NO HIT ref[XP_002303631.1] predicted protein [Populus trichocarapa] 9e-29	CAHV_CD_01_020_C10	346	NO HIT		NO HIT		
CAHV_CD_01_020_H07 319 NO HIT emb[CBI21835.3] unnamed protein product [Vitis vinifera] 2e-16 CAHV_CD_01_020_H10 15 NO HIT N	CAHV_CD_01_020_D07	431	NO HIT		NO HIT		
CAHV_CD_01_020_H1015NO HITNO HIT<	CAHV_CD_01_020_H07	319	NO HIT	emb CBI21835.3	unnamed protein product [Vitis vinifera]	2e-16	Р
CAHV_CD_01_021_A01160NO HITref XP_001546914.1 hypothetical protein [Botryotinia fuckeliana]1e-04CAHV_CD_01_021_A10521NO HITNO HITNO HITCAHV_CD_01_021_B1033NO HITNO HITNO HITCAHV_CD_01_021_D03306NO HITref XP_001396739.1 hypothetical protein [Aspergillus niger]3e-21CAHV_CD_01_021_E10564NO HITref XP_001396739.1 hypothetical protein [Aspergillus niger]3e-22CAHV_CD_01_021_E10564NO HITref XP_002303631.1 predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITref XP_002303631.1 putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_020_H10	15	NO HIT		NO HIT		
CAHV_CD_01_021_A10521NO HITNO HITCAHV_CD_01_021_B1033NO HITNO HITCAHV_CD_01_021_D03306NO HITNO HITCAHV_CD_01_021_E03230NO HITref[XP_001396739.1]hypothetical protein [Aspergillus niger]3e-21CAHV_CD_01_021_E10564NO HITemb]CBI27953.3]unnamed protein product [Vitis vinifera]3e-22CAHV_CD_01_021_F09496NO HITref[XP_002303631.1]predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITemb]CAB45415.2]putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_021_A01	160	NO HIT	ref XP_001546914.1	hypothetical protein [Botryotinia fuckeliana]	1e-04	F
CAHV_CD_01_021_B1033NO HITNO HITCAHV_CD_01_021_D03306NO HITNO HITCAHV_CD_01_021_E03230NO HITref XP_001396739.1 hypothetical protein [Aspergillus niger]3e-21CAHV_CD_01_021_E10564NO HITemb CBI27953.3 unnamed protein product [Vitis vinifera]3e-22CAHV_CD_01_021_F09496NO HITref XP_002303631.1 predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITemb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_021_A10	521	NO HIT		NO HIT		
CAHV_CD_01_021_D03306NO HITNO HITCAHV_CD_01_021_E03230NO HITref XP_001396739.1 hypothetical protein [Aspergillus niger]3e-21CAHV_CD_01_021_E10564NO HITemb CBI27953.3 unnamed protein product [Vitis vinifera]3e-22CAHV_CD_01_021_F09496NO HITref XP_002303631.1 predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITemb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_021_B10	33	NO HIT		NO HIT		
CAHV_CD_01_021_E03230NO HITref XP_001396739.1 hypothetical protein [Aspergillus niger]3e-21CAHV_CD_01_021_E10564NO HITemb CBI27953.3 unnamed protein product [Vitis vinifera]3e-22CAHV_CD_01_021_F09496NO HITref XP_002303631.1 predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITNO HITNO HITCAHV_CD_01_021_H01613NO HITemb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_021_D03	306	NO HIT		NO HIT		
CAHV_CD_01_021_E10564NO HITemb CBI27953.3 unnamed protein product [Vitis vinifera]3e-22CAHV_CD_01_021_F09496NO HITref XP_002303631.1 predicted protein [Populus trichocarpa]9e-29CAHV_CD_01_021_G11299NO HITNO HITNO HITCAHV_CD_01_021_H01613NO HITemb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani]2e-09	CAHV_CD_01_021_E03	230	NO HIT	ref XP_001396739.1	hypothetical protein [Aspergillus niger]	3e-21	F
CAHV_CD_01_021_F09 496 NO HIT ref XP_002303631.1 predicted protein [Populus trichocarpa] 9e-29 CAHV_CD_01_021_G11 299 NO HIT NO HIT NO HIT NO HIT Putative mitogen-activated protein kinase kinase [Leishmania donovani] 2e-09	CAHV_CD_01_021_E10	564	NO HIT	emb CBI27953.3	unnamed protein product [Vitis vinifera]	3e-22	Р
CAHV_CD_01_021_G11 299 NO HIT NO HIT NO HIT CAHV_CD_01_021_H01 613 NO HIT emb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani] 2e-09	CAHV_CD_01_021_F09	496	NO HIT	ref XP_002303631.1	predicted protein [Populus trichocarpa]	9e-29	Р
CAHV_CD_01_021_H01 613 NO HIT emb CAB45415.2 putative mitogen-activated protein kinase kinase [Leishmania donovani] 2e-09	CAHV_CD_01_021_G11	299	NO HIT		NO HIT		
	CAHV_CD_01_021_H01	613	NO HIT	emb CAB45415.2	putative mitogen-activated protein kinase kinase [Leishmania donovani]	2e-09	OUT

CAHV_CD_01_021_H08	375	NO HIT		NO HIT		
CAHV_CD_01_022_A04	576	NO HIT	ref XP_001828844.1	hypothetical protein [Coprinopsis cinerea okayama]	2e-42	F
CAHV_CD_01_022_B07	404	NO HIT		NO HIT		
CAHV_CD_01_022_B11	487	NO HIT	ref XP_003037907.1	glutamine synthetase [Schizophyllum commune]	2e-77	F
CAHV_CD_01_022_C05	540	NO HIT	ref XP_001886470.1	predicted protein [Laccaria bicolor]	2e-45	F
CAHV_CD_01_022_E03	488	NO HIT		NO HIT		
CAHV_CD_01_022_F10	572	NO HIT	ref XP_003029887.1	hypothetical protein [Schizophyllum commune]	4e-25	F
CAHV_CD_01_022_H01	519	NO HIT	ref XP_003026701.1	hypothetical protein [Schizophyllum commune]	1e-23	F
CAHV_CD_01_023_A02	571	NO HIT	ref XP_571980.1	60S ribosomal protein L24 (L30) [Cryptococcus neoformans var. neoformans]	7e-31	F
CAHV_CD_01_023_A10	358	NO HIT		NO HIT		
CAHV_CD_01_023_A12	397	NO HIT		NO HIT		
CAHV_CD_01_023_D01	600	NO HIT		NO HIT		
CAHV_CD_01_023_E05	466	NO HIT		NO HIT		
CAHV_CD_01_023_E08	347	NO HIT		NO HIT		
CAHV_CD_01_023_F05	12	NO HIT		NO HIT		
CAHV_CD_01_023_F09	437	NO HIT		NO HIT		
CAHV_CD_01_023_G03	480	NO HIT	emb CBI24120.3	unnamed protein product [Vitis vinifera]	6e-28	Р
CAHV_CD_01_023_H04	21	NO HIT		NO HIT		
CAHV_CD_01_023_H12	491	NO HIT	ref XP_566696.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	5e-24	F
CAHV_CD_01_024_A02	11	NO HIT		NO HIT		
CAHV_CD_01_024_A06	314	NO HIT		NO HIT		
CAHV_CD_01_024_B02	21	NO HIT		NO HIT		
CAHV_CD_01_024_C07	514	NO HIT	ref XP_566574.1	ubiquitin activating enzyme [Cryptococcus neoformans var. neoformans]	2e-04	F
CAHV_CD_01_024_D04	567	NO HIT	ref XP_002271313.1	hypothetical protein [Vitis vinifera]	2e-59	Р
CAHV_CD_01_024_E02	514	NO HIT	ref XP_570072.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	6e-10	F
CAHV_CD_01_024_F09	558	NO HIT	gb ABL11219.1	trehalose-6-phosphate synthase [Saccharomyces cerevisiae]	1e-37	F
CAHV_CD_01_024_G09	400	NO HIT		NO HIT		
CAHV_CD_01_024_G11	395	NO HIT		NO HIT		
CAHV_CD_01_024_H01	573	NO HIT	ref XP_002389012.1	hypothetical protein [Moniliophthora perniciosa]	7e-42	F
CAHV_CD_01_024_H02	576	NO HIT	ref XP_002524503.1	conserved hypothetical protein [Ricinus communis]	2e-08	Р
CAHV_CD_01_024_H05	346	NO HIT	ref XP_760809.1	hypothetical protein [Ustilago maydis]	6e-07	F
CAHV_CD_01_025_H12	329	NO HIT		NO HIT		
CAHV_CD_01_026_A06	273	NO HIT		NO HIT		
CAHV_CD_01_026_A12	587	NO HIT	ref XP_003037972.1	hypothetical protein [Schizophyllum commune]	5e-32	F
CAHV_CD_01_026_B06	16	NO HIT		NO HIT		
CAHV_CD_01_026_B12	610	NO HIT	ref XP_760063.1	histone H3 [Ustilago maydis]	2e-49	F
CAHV_CD_01_026_D09	563	NO HIT		NO HIT		
CAHV_CD_01_026_E03	249	NO HIT		NO HIT		
CAHV_CD_01_026_E04	599	NO HIT		NO HIT		
CAHV_CD_01_026_E12	599	NO HIT	ref XP_001556188.1	hypothetical protein [Botryotinia fuckeliana]	4e-22	F

CAHV_CD_01_026_F10	606	NO HIT	emb CAN60322.1	hypothetical protein [Vitis vinifera]	6e-60	Р
CAHV_CD_01_026_G07	590	NO HIT	ref XP_002264040.1	PREDICTED: hypothetical protein [Vitis vinifera]	4e-29	Р
CAHV_CD_01_026_H10	625	NO HIT	ref XP_002284759.1	PREDICTED: hypothetical protein [Vitis vinifera]	1e-31	Р
CAHV_CD_01_027_A09	112	NO HIT	ref YP_002720022.1	photosystem II protein I [Nicotiana tabacum]	8e-12	Р
CAHV_CD_01_027_D09	613	NO HIT		NO HIT		
CAHV_CD_01_027_F03	328	NO HIT		NO HIT		
CAHV_CD_01_027_G04	44	NO HIT		NO HIT		
CAHV_CD_01_027_H04	16	NO HIT		NO HIT		
CAHV_CD_01_027_H08	167	NO HIT		NO HIT		
CAHV_CD_01_027_H12	602	NO HIT	ref XP_389419.1	hypothetical protein [Gibberella zeae]	4e-04	F
CAHV_CD_01_028_A04	478	NO HIT	ref XP_001833034.2	hypothetical protein [Coprinopsis cinerea okayama]	2e-45	F
CAHV_CD_01_028_B01	299	NO HIT		NO HIT		
CAHV_CD_01_028_C01	178	NO HIT		NO HIT		
CAHV_CD_01_028_C12	25	NO HIT		NO HIT		
CAHV_CD_01_028_F03	281	NO HIT		NO HIT		
CAHV_CD_01_028_F06	37	NO HIT		NO HIT		
CAHV_CD_01_028_F09	542	NO HIT		NO HIT		
CAHV_CD_01_028_F11	322	NO HIT		NO HIT		
CAHV_CD_01_028_G01	421	NO HIT	ref XP_002457392.1	hypothetical protein [Sorghum bicolor]	3e-33	Р
CAHV_CD_01_028_G09	16	NO HIT		NO HIT		
CAHV_CD_01_029_C09	413	NO HIT	ref XP_001878090.1	predicted protein [Laccaria bicolor]	2e-37	F
CAHV_CD_01_029_C12	327	NO HIT		NO HIT		
CAHV_CD_01_029_D04	458	NO HIT	ref XP_001729026.1	hypothetical protein [Malassezia globosa]	1e-29	F
CAHV_CD_01_029_D06	323	NO HIT		NO HIT		
CAHV_CD_01_029_E01	443	NO HIT	ref XP_002301054.1	predicted protein [Populus trichocarpa]	5e-38	Р
CAHV_CD_01_029_F10	406	NO HIT		NO HIT		
CAHV_CD_01_029_G04	300	NO HIT		NO HIT		
CAHV_CD_01_029_G10	189	NO HIT		NO HIT		
CAHV_CD_01_029_H09	400	NO HIT	ref XP_759445.1	hypothetical protein [Ustilago maydis]	1e-43	F
CAHV_CD_01_030_A06	373	NO HIT		NO HIT		
CAHV_CD_01_030_A08	371	NO HIT	ref XP_001876554.1	epoxide hydrolase [Laccaria bicolor]	1e-13	F
CAHV_CD_01_030_F06	82	NO HIT		NO HIT		
CAHV_CD_01_030_F08	385	NO HIT		NO HIT		
CAHV_CD_01_030_G02	238	NO HIT		NO HIT		
CAHV_CD_01_031_A08	637	NO HIT	ref XP_756164.1	hypothetical protein [Ustilago maydis]	4e-58	F
CAHV_CD_01_031_B05	322	NO HIT		NO HIT		
CAHV_CD_01_031_B07	426	NO HIT		NO HIT		
CAHV_CD_01_031_B10	653	NO HIT	emb CAN78112.1	hypothetical protein [Vitis vinifera]	1e-83	Р
CAHV_CD_01_031_C01	574	NO HIT		NO HIT		
CAHV_CD_01_031_C08	325	NO HIT		NO HIT		

CAHV_CD_01_031_D05	529	NO HIT	ref XP_001731703.1	hypothetical protein [Malassezia globosa]	2e-18	F
CAHV_CD_01_031_D09	575	NO HIT	ref XP_003026328.1	hypothetical protein [Schizophyllum commune]	2e-61	F
CAHV_CD_01_031_E01	557	NO HIT		NO HIT		
CAHV_CD_01_031_E08	394	NO HIT		NO HIT		
CAHV_CD_01_031_E11	615	NO HIT	ref XP_003032272.1	hypothetical protein [Schizophyllum commune]	2e-28	F
CAHV_CD_01_031_F10	16	NO HIT		NO HIT		
CAHV_CD_01_031_G03	586	NO HIT	ref XP_001873167.1	predicted protein [Laccaria bicolor]	3e-57	F
CAHV_CD_01_031_G08	593	NO HIT	ref XP_002437460.1	hypothetical protein [Sorghum bicolor]	5e-11	Р
CAHV_CD_01_031_H01	570	NO HIT	ref XP_002281370.1	hypothetical protein [Vitis vinifera]	2e-23	Р
CAHV_CD_01_031_H03	368	NO HIT		NO HIT		
CAHV_CD_01_031_H05	350	NO HIT		NO HIT		
CAHV_CD_01_031_H06	619	NO HIT		NO HIT		
CAHV_CD_01_032_A02	563	NO HIT		NO HIT		
CAHV_CD_01_032_B07	298	NO HIT	gb ABZ89184.1	putative protein [Coffea canephora]	7e-13	Р
CAHV_CD_01_032_D10	13	NO HIT		NO HIT		
CAHV_CD_01_032_E04	31	NO HIT		NO HIT		
CAHV_CD_01_032_E07	11	NO HIT		NO HIT		
CAHV_CD_01_032_E12	61	NO HIT		NO HIT		
CAHV_CD_01_032_H12	606	NO HIT		NO HIT		
CAHV_CD_01_033_B03	15	NO HIT		NO HIT		
CAHV_CD_01_033_B09	153	NO HIT		NO HIT		
CAHV_CD_01_033_B10	512	NO HIT		NO HIT		
CAHV_CD_01_033_C03	29	NO HIT		NO HIT		
CAHV_CD_01_033_F04	505	NO HIT		NO HIT		
CAHV_CD_01_033_F06	473	NO HIT		NO HIT		
CAHV_CD_01_033_G03	641	NO HIT	gb ACZ80693.1	putative retrotransposon nucleocapsid protein [Filobasidiella depauperata]	5e-16	F
CAHV_CD_01_033_G10	293	NO HIT		NO HIT		
CAHV_CD_01_034_A01	593	NO HIT		NO HIT		
CAHV_CD_01_034_A04	474	NO HIT		NO HIT		
CAHV_CD_01_034_B05	517	NO HIT		NO HIT		
CAHV_CD_01_034_D10	540	NO HIT	ref XP_002311524.1	predicted protein [Populus trichocarpa]	2e-68	Р
CAHV_CD_01_034_E04	270	NO HIT	ref XP_002510244.1	hypothetical protein [Ricinus communis]	4e-16	Р
CAHV_CD_01_034_E11	568	NO HIT	ref XP_762471.1	hypothetical protein [Ustilago maydis]	3e-28	F
CAHV_CD_01_034_F07	638	NO HIT	sp Q99042.1 OXDA_TRIVR	D-amino-acid oxidase [Trigonopsis variabilis]	1e-13	F
CAHV_CD_01_034_F08	73	NO HIT		NO HIT		
CAHV_CD_01_034_G03	117	NO HIT		NO HIT		
CAHV_CD_01_034_G04	582	NO HIT	ref XP_003037469.1	hypothetical protein [Schizophyllum commune]	2e-11	F
CAHV_CD_01_034_G08	528	NO HIT	ref XP_001794541.1	hypothetical protein [Phaeosphaeria nodorum]	1e-18	F
CAHV_CD_01_034_H02	303	NO HIT		NO HIT		
CAHV_CD_01_034_H11	531	NO HIT		NO HIT		

CAHV_CD_01_035_A04	459	NO HIT		NO HIT		
CAHV_CD_01_035_A06	617	NO HIT		NO HIT		
CAHV_CD_01_035_C02	626	NO HIT	ref XP_002314662.1	autoinhibited calcium ATPase [Populus trichocarpa]	1e-90	Р
CAHV_CD_01_035_C05	316	NO HIT		NO HIT		
CAHV_CD_01_035_C07	660	NO HIT		NO HIT		
CAHV_CD_01_035_C12	637	NO HIT		NO HIT		
CAHV_CD_01_035_D03	439	NO HIT		NO HIT		
CAHV_CD_01_035_D09	53	NO HIT		NO HIT		
CAHV_CD_01_035_F01	601	NO HIT	emb CBN80164.1	conserved unknown protein [Ectocarpus siliculosus]	9e-06	OUT
CAHV_CD_01_035_F06	63	NO HIT		NO HIT		
CAHV_CD_01_036_A06	268	NO HIT	ref XP_002519419.1	UDP-glucosyltransferase, putative [Ricinus communis]	6e-04	Р
CAHV_CD_01_036_B07	20	NO HIT		NO HIT		
CAHV_CD_01_036_D01	33	NO HIT		NO HIT		
CAHV_CD_01_036_E01	36	NO HIT		NO HIT		
CAHV_CD_01_036_E02	11	NO HIT		NO HIT		
CAHV_CD_01_036_F04	633	NO HIT		NO HIT		
CAHV_CD_01_036_G08	133	NO HIT		NO HIT		
CAHV_CD_01_036_G11	632	NO HIT		NO HIT		
CAHV_CD_01_036_H07	526	NO HIT	ref XP_001593591.1	hypothetical protein [Sclerotinia sclerotiorum]	3e-09	F
CAHV_CD_01_037_A06	23	NO HIT		NO HIT		
CAHV_CD_01_037_A11	277	NO HIT		NO HIT		
CAHV_CD_01_037_B10	618	NO HIT		NO HIT		
CAHV_CD_01_037_C12	377	NO HIT		NO HIT		
CAHV_CD_01_037_G01	46	NO HIT		NO HIT		
CAHV_CD_01_037_G02	617	NO HIT	ref XP_001546971.1	predicted protein [Botryotinia fuckeliana]	7e-04	F
CAHV_CD_01_037_G07	616	NO HIT	ref XP_001833505.2	phosphoglycerate kinase [Coprinopsis cinerea okayama]	7e-72	F
CAHV_CD_01_037_G09	197	NO HIT		NO HIT		
CAHV_CD_01_037_H07	583	NO HIT	ref XP_756645.1	hypothetical protein [Ustilago maydis]	6e-04	F
CAHV_CD_01_038_B02	277	NO HIT	ref XP_760975.1	hypothetical protein [Ustilago maydis]	1e-27	F
CAHV_CD_01_038_B09	493	NO HIT		NO HIT		
CAHV_CD_01_038_B11	479	NO HIT		NO HIT		
CAHV_CD_01_038_C03	21	NO HIT		NO HIT		
CAHV_CD_01_038_C12	356	NO HIT		NO HIT		
CAHV_CD_01_038_E02	488	NO HIT		NO HIT		
CAHV_CD_01_038_E04	496	NO HIT		NO HIT		
CAHV_CD_01_038_E08	183	NO HIT		NO HIT		
CAHV_CD_01_038_G03	563	NO HIT		NO HIT		
CAHV_CD_01_038_H10	83	NO HIT		NO HIT		
CAHV_CD_01_039_A11	601	NO HIT	ref XP_760066.1	hypothetical protein [Ustilago maydis]	4e-10	F
CAHV_CD_01_039_B03	11	NO HIT		NO HIT		

CAHV_CD_01_039_B05	537	NO HIT		NO HIT		
CAHV_CD_01_039_C03	589	NO HIT	ref XP_760059.1	hypothetical protein [Ustilago maydis]	4e-45	F
CAHV_CD_01_039_C04	11	NO HIT		NO HIT		
CAHV_CD_01_039_C12	247	NO HIT		NO HIT		
CAHV_CD_01_039_E02	433	NO HIT	emb CAN69966.1	hypothetical protein [Vitis vinifera]	6e-05	Р
CAHV_CD_01_039_E07	445	NO HIT		NO HIT		
CAHV_CD_01_039_E12	156	NO HIT		NO HIT		
CAHV_CD_01_039_G01	12	NO HIT		NO HIT		
CAHV_CD_01_039_G08	460	NO HIT		NO HIT		
CAHV_CD_01_039_H03	511	NO HIT		NO HIT		
CAHV_CD_01_040_C08	29	NO HIT		NO HIT		
CAHV_CD_01_040_C11	663	NO HIT	ref XP_002312056.1	predicted protein [Populus trichocarpa]	2e-47	Р
CAHV_CD_01_040_D05	266	NO HIT		NO HIT		
CAHV_CD_01_040_E02	531	NO HIT	emb CAD41731.1	OSJNBb0034I13.10 [Oryza sativa (japonica cultivar-group)]	1e-21	Р
CAHV_CD_01_040_F10	454	NO HIT	ref XP_567341.1	L-ornithine transporter [Cryptococcus neoformans var. neoformans]	1e-05	F
CAHV_CD_01_040_F12	391	NO HIT		NO HIT		
CAHV_CD_01_040_G11	645	NO HIT		NO HIT		
CAHV_CD_01_040_G12	673	NO HIT	ref XP_002317007.1	predicted protein [Populus trichocarpa]	3e-08	Р
CAHV_CD_01_040_H02	478	NO HIT	ref XP_002912233.1	Nop10 family nucleolar RNA-binding protein [Coprinopsis cinerea okayama]	5e-09	F
CAHV_CD_01_041_A09	621	NO HIT		NO HIT		
CAHV_CD_01_041_A12	82	NO HIT		NO HIT		
CAHV_CD_01_041_B11	573	NO HIT	ref XP_001241299.1	hypothetical protein [Coccidioides immitis]	3e-18	F
CAHV_CD_01_041_C11	642	NO HIT	ref XP_003037797.1	hypothetical protein [Schizophyllum commune]	1e-81	F
CAHV_CD_01_041_E03	380	NO HIT		NO HIT		
CAHV_CD_01_041_E06	280	NO HIT		NO HIT		
CAHV_CD_01_041_F10	12	NO HIT		NO HIT		
CAHV_CD_01_041_G08	462	NO HIT	ref XP_001802422.1	hypothetical protein [Phaeosphaeria nodorum]	1e-34	F
CAHV_CD_01_041_G09	621	NO HIT	ref XP_002265436.1	hypothetical protein [Vitis vinifera]emb	1e-46	Р
CAHV_CD_01_041_H01	512	NO HIT		NO HIT		
CAHV_CD_01_041_H03	15	NO HIT		NO HIT		
CAHV_CD_01_041_H04	372	NO HIT		NO HIT		
CAHV_CD_01_042_A12	460	NO HIT	emb CBI35119.3	unnamed protein product [Vitis vinifera]	1e-24	Р
CAHV_CD_01_042_B08	17	NO HIT		NO HIT		
CAHV_CD_01_042_B10	327	NO HIT		NO HIT		
CAHV_CD_01_042_C02	588	NO HIT	ref XP_002512884.1	serine-threonine protein kinase, plant-type, putative [Ricinus communis]	2e-09	Р
CAHV_CD_01_042_D11	474	NO HIT		NO HIT		
CAHV_CD_01_042_D12	14	NO HIT		NO HIT		
CAHV_CD_01_042_E04	29	NO HIT		NO HIT		
CAHV_CD_01_042_E09	457	NO HIT	emb CBI55096.1	unnamed protein product [Sordaria macrospora]	6e-44	F
CAHV_CD_01_042_E10	327	NO HIT		NO HIT		

CAHV_CD_01_042_F01	253	NO HIT		NO HIT		
CAHV_CD_01_042_F05	201	NO HIT		NO HIT		
CAHV_CD_01_042_G11	547	NO HIT		NO HIT		
CAHV_CD_01_043_E12	22	NO HIT		NO HIT		
CAHV_CD_01_043_F02	59	NO HIT		NO HIT		
CAHV_CD_01_043_F12	560	NO HIT	ref XP_003030370.1	hypothetical protein [Schizophyllum commune]	2e-30	F
CAHV_CD_01_043_G05	462	NO HIT		NO HIT		
CAHV_CD_01_043_G09	456	NO HIT		NO HIT		
CAHV_CD_01_043_H08	25	NO HIT		NO HIT		
CAHV_CD_01_044_A11	543	NO HIT		NO HIT		
CAHV_CD_01_044_B05	431	NO HIT	emb CBI19264.3	unnamed protein product [Vitis vinifera]	5e-51	Р
CAHV_CD_01_044_C01	418	NO HIT	ref XP_002911782.1	hypothetical protein [Coprinopsis cinerea okayama]	3e-10	F
CAHV_CD_01_044_E06	597	NO HIT	ref XP_002523824.1	conserved hypothetical protein [Ricinus communis]	1e-61	Р
CAHV_CD_01_044_F02	116	NO HIT		NO HIT		
CAHV_CD_01_044_G12	336	NO HIT		NO HIT		
CAHV_CD_01_045_C02	602	NO HIT	ref XP_001908753.1	hypothetical protein [Podospora anserina S mat+]	6e-36	F
CAHV_CD_01_045_D01	18	NO HIT		NO HIT		
CAHV_CD_01_045_D02	542	NO HIT	ref XP_001269945.1	conserved hypothetical protein [Aspergillus clavatus]	8e-20	F
CAHV_CD_01_045_D11	435	NO HIT	ref XP_001873446.1	predicted protein [Laccaria bicolor]	3e-06	F
CAHV_CD_01_045_E12	442	NO HIT		NO HIT		
CAHV_CD_01_045_F01	577	NO HIT	ref XP_002277406.1	hypothetical protein [Vitis vinifera]	1e-04	Р
CAHV_CD_01_045_F12	312	NO HIT	gb AAR82933.1	multicopper oxidase [Auricularia auricula-judae]	2e-05	F
CAHV_CD_01_045_G09	12	NO HIT		NO HIT		
CAHV_CD_01_045_H10	11	NO HIT		NO HIT		
CAHV_CD_01_047_A04	248	NO HIT		NO HIT		
CAHV_CD_01_047_A12	496	NO HIT		NO HIT		
CAHV_CD_01_047_B10	447	NO HIT		NO HIT		
CAHV_CD_01_047_D08	561	NO HIT	emb CAN83190.1	hypothetical protein [Vitis vinifera]	3e-26	Р
CAHV_CD_01_047_E09	15	NO HIT		NO HIT		
CAHV_CD_01_047_G03	569	NO HIT	ref XP_566483.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	2e-06	F
CAHV_CD_01_047_G08	21	NO HIT		NO HIT		
CAHV_CD_01_047_H08	363	NO HIT		NO HIT		
CAHV_CD_01_047_H10	557	NO HIT	ref XP_572059.1	mannosyl-oligosaccharide 1,2-alpha-mannosidase [Cryptococcus neoformans var. neoformans]	1e-12	F
CAHV_CD_01_048_A05	304	NO HIT		NO HIT		
CAHV_CD_01_048_A06	309	NO HIT		NO HIT		
CAHV_CD_01_048_B05	485	NO HIT	ref XP_002275676.1	hypothetical protein [Vitis vinifera]	2e-35	Р
CAHV_CD_01_048_B06	533	NO HIT		NO HIT		
CAHV_CD_01_048_B10	184	NO HIT		NO HIT		
CAHV_CD_01_048_E06	455	NO HIT		NO HIT		
CAHV_CD_01_048_F03	239	NO HIT		NO HIT		

CAHV_CD_01_048_G01	230	NO HIT		NO HIT		
CAHV_CD_01_048_G03	587	NO HIT	ref XP_680687.1	hypothetical protein [Aspergillus nidulans]	1e-38	F
CAHV_CD_01_050_B11	12	NO HIT		NO HIT		
CAHV_CD_01_050_C01	568	NO HIT		NO HIT		
CAHV_CD_01_050_C12	166	NO HIT		NO HIT		
CAHV_CD_01_050_D01	530	NO HIT	ref XP_566656.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	2e-17	F
CAHV_CD_01_050_D07	525	NO HIT	ref XP_003027593.1	carbohydrate esterase family 4 protein [Schizophyllum commune]	3e-22	F
CAHV_CD_01_050_D08	34	NO HIT		NO HIT		
CAHV_CD_01_050_E11	28	NO HIT		NO HIT		
CAHV_CD_01_050_F05	283	NO HIT		NO HIT		
CAHV_CD_01_050_F11	475	NO HIT		NO HIT		
CAHV_CD_01_050_H01	513	NO HIT	ref XP_002278361.1	hypothetical protein [Vitis vinifera]	3e-15	Р
CAHV_CD_01_050_H09	499	NO HIT	ref XP_003032006.1	hypothetical protein [Schizophyllum commune]	6e-07	F
CAHV_CD_01_050_H12	424	NO HIT	gb EEQ46221.1	heat shock protein STI1 [Candida albicans]	7e-05	F
CAHV_CD_02_001a_A05	25	NO HIT		NO HIT		
CAHV_CD_02_001a_A08	42	NO HIT		NO HIT		
CAHV_CD_02_001a_B05	23	NO HIT		NO HIT		
CAHV_CD_02_001a_B11	11	NO HIT		NO HIT		
CAHV_CD_02_001a_E04	332	NO HIT		NO HIT		
CAHV_CD_02_001a_F02	87	NO HIT		NO HIT		
CAHV_CD_02_001a_F05	22	NO HIT		NO HIT		
CAHV_CD_02_001a_F10	232	NO HIT		NO HIT		
CAHV_CD_02_001a_H03	206	NO HIT		NO HIT		
CAHV_CD_02_001b_D05	172	NO HIT		NO HIT		
CAHV_CD_02_001b_D07	11	NO HIT		NO HIT		
CAHV_CD_02_001b_F07	32	NO HIT		NO HIT		
CAHV_CD_02_001b_F10	271	NO HIT		NO HIT		
CAHV_CD_02_001b_F12	29	NO HIT		NO HIT		
CAHV_CD_02_001b_G07	40	NO HIT		NO HIT		
CAHV_CD_02_001b_G11	13	NO HIT		NO HIT		
CAHV_CD_02_001b_H03	242	NO HIT		NO HIT		
CAHV_CD_02_002a_A07	40	NO HIT		NO HIT		
CAHV_CD_02_002a_B12	12	NO HIT		NO HIT		
CAHV_CD_02_002a_C04	19	NO HIT		NO HIT		
CAHV_CD_02_002a_C11	235	NO HIT	ref XP_002283931.1	hypothetical protein [Vitis vinifera]emb	8e-12	Р
CAHV_CD_02_002a_E02	18	NO HIT		NO HIT		
CAHV_CD_02_002a_H06	109	NO HIT		NO HIT		
CAHV_CD_02_002a_H09	90	NO HIT		NO HIT		
CAHV_CD_02_002b_E01	24	NO HIT		NO HIT		
CAHV_CD_02_002b_F01	31	NO HIT		NO HIT		

CAHV_CD_02_002b_G08	16	NO HIT		NO HIT		
CAHV_CD_02_003_A03	311	NO HIT		NO HIT		
CAHV_CD_02_003_A04	637	NO HIT		NO HIT		
CAHV_CD_02_003_A12	371	NO HIT		NO HIT		
CAHV_CD_02_003_B02	622	NO HIT	ref XP_568285.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	1e-65	F
CAHV_CD_02_003_D11	593	NO HIT	ref XP_001832853.1	adenyloSUCcinate synthase [Coprinopsis cinerea okayama]	1e-64	F
CAHV_CD_02_003_F01	111	NO HIT	ref XP_003035093.1	hypothetical protein [Schizophyllum commune]	4e-09	F
CAHV_CD_02_003_F11	148	NO HIT		NO HIT		
CAHV_CD_02_003_G02	13	NO HIT		NO HIT		
CAHV_CD_02_003_H11	508	NO HIT	ref XP_002279261.1	hypothetical protein [Vitis vinifera]	3e-16	Р
CAHV_CD_02_004_A11	644	NO HIT		NO HIT		
CAHV_CD_02_004_B03	305	NO HIT		NO HIT		
CAHV_CD_02_004_C04	275	NO HIT		NO HIT		
CAHV_CD_02_004_C08	502	NO HIT		NO HIT		
CAHV_CD_02_004_D04	456	NO HIT	ref XP_001886483.1	predicted protein [Laccaria bicolor]	3e-30	F
CAHV_CD_02_004_D05	603	NO HIT		NO HIT		
CAHV_CD_02_004_E01	12	NO HIT		NO HIT		
CAHV_CD_02_004_E04	127	NO HIT		NO HIT		
CAHV_CD_02_004_G06	628	NO HIT	gb ACL30962.1	hybrid histidine kinase [Pisolithus tinctorius]	4e-26	F
CAHV_CD_02_004_H03	542	NO HIT		NO HIT		
CAHV_CD_02_005_A07	409	NO HIT		NO HIT		
CAHV_CD_02_005_A08	21	NO HIT		NO HIT		
CAHV_CD_02_005_B12	416	NO HIT		NO HIT		
CAHV_CD_02_005_C04	489	NO HIT		NO HIT		
CAHV_CD_02_005_C05	29	NO HIT		NO HIT		
CAHV_CD_02_005_F02	256	NO HIT	ref XP_003037268.1	hypothetical protein[Schizophyllum commune]	2e-05	F
CAHV_CD_02_005_G10	11	NO HIT		NO HIT		
CAHV_CD_02_005_G11	675	NO HIT	ref XP_645395.1	glutamate-tRNA ligase [Dictyostelium discoideum]	8e-63	OUT
CAHV_CD_02_005_G12	116	NO HIT		NO HIT		
CAHV_CD_02_005_H08	651	NO HIT	ref XP_457420.2	DEHA2B10736p [Debaryomyces hansenii]	2e-10	F
CAHV_CD_02_006_A09	456	NO HIT		NO HIT		
CAHV_CD_02_006_A11	528	NO HIT	ref XP_003037297.1	hypothetical protein [Schizophyllum commune]	8e-40	F
CAHV_CD_02_006_B09	520	NO HIT	ref XP_002550014.1	glutaredoxin [Candida tropicalis]	4e-22	F
CAHV_CD_02_006_C02	380	NO HIT	ref XP_003037942.1	hypothetical protein [Schizophyllum commune]	7e-42	F
CAHV_CD_02_006_C10	598	NO HIT	ref XP_001875195.1	dihydrolipoyl dehydrogenase [Laccaria bicolor]	4e-54	F
CAHV_CD_02_006_F09	487	NO HIT	ref XP_002269137.1	hypothetical protein [Vitis vinifera]	2e-04	Р
CAHV_CD_02_007_A04	666	NO HIT	ref XP_570847.1	cytoplasm protein [Cryptococcus neoformans var. neoformans]	4e-61	F
CAHV_CD_02_007_B04	671	NO HIT	ref XP_002270849.1	hypothetical protein [Vitis vinifera]	6e-68	Р
CAHV_CD_02_007_B05	344	NO HIT		NO HIT		
CAHV_CD_02_007_B09	237	NO HIT		NO HIT		

CAHV_CD_02_007_C01	552	NO HIT	ref XP_759455.1	hypothetical protein [Ustilago maydis]	5e-26	F
CAHV_CD_02_007_C11	558	NO HIT	ref XP_002517792.1	conserved hypothetical protein [Ricinus communis]	6e-15	Р
CAHV_CD_02_007_D12	542	NO HIT		NO HIT		
CAHV_CD_02_007_F10	309	NO HIT		NO HIT		
CAHV_CD_02_007_G09	184	NO HIT		NO HIT		
CAHV_CD_02_007_H10	309	NO HIT		NO HIT		
CAHV_CD_02_008_A08	52	NO HIT		NO HIT		
CAHV_CD_02_008_A10	509	NO HIT		NO HIT		
CAHV_CD_02_008_B03	585	NO HIT		NO HIT		
CAHV_CD_02_008_C01	141	NO HIT		NO HIT		
CAHV_CD_02_008_D09	172	NO HIT		NO HIT		
CAHV_CD_02_008_D11	384	NO HIT		NO HIT		
CAHV_CD_02_008_E05	569	NO HIT	ref XP_002510655.1	conserved hypothetical protein [Ricinus communis]	4e-44	Р
CAHV_CD_02_008_F05	425	NO HIT		NO HIT		
CAHV_CD_02_008_F06	293	NO HIT		NO HIT		
CAHV_CD_02_008_G06	357	NO HIT		NO HIT		
CAHV_CD_02_008_H05	547	NO HIT	gb EDK36954.2	hypothetical protein [Pichia guilliermondii]	2e-07	F
CAHV_CD_02_009_A10	641	NO HIT	ref XP_002474647.1	predicted protein [Postia placenta]	6e-14	F
CAHV_CD_02_009_C05	539	NO HIT		NO HIT		
CAHV_CD_02_009_C07	480	NO HIT		NO HIT		
CAHV_CD_02_009_C11	321	NO HIT		NO HIT		
CAHV_CD_02_009_D03	634	NO HIT	ref XP_572916.1	lectin [Cryptococcus neoformans var. neoformans]	4e-47	F
CAHV_CD_02_009_E10	280	NO HIT		NO HIT		
CAHV_CD_02_009_F01	608	NO HIT	ref XP_001884396.1	predicted protein [Laccaria bicolor]	8e-58	F
CAHV_CD_02_009_G09	403	NO HIT		NO HIT		
CAHV_CD_02_009_H12	274	NO HIT		NO HIT		
CAHV_CD_02_010_A04	72	NO HIT		NO HIT		
CAHV_CD_02_010_C03	462	NO HIT	ref XP_001830182.1	40S ribosomal protein S8 [Coprinopsis cinerea okayama]	4e-55	F
CAHV_CD_02_010_C05	205	NO HIT		NO HIT		
CAHV_CD_02_010_D02	430	NO HIT		NO HIT		
CAHV_CD_02_010_D09	600	NO HIT	ref XP_002326106.1	predicted protein [Populus trichocarpa]	1e-54	Р
CAHV_CD_02_010_E02	349	NO HIT		NO HIT		
CAHV_CD_02_010_E07	153	NO HIT		NO HIT		
CAHV_CD_02_010_E08	214	NO HIT		NO HIT		
CAHV_CD_02_010_H03	400	NO HIT		NO HIT		
CAHV_CD_02_012_C10	409	NO HIT		NO HIT		
CAHV_CD_02_012_D03	451	NO HIT		NO HIT		
CAHV_CD_02_012_E10	444	NO HIT		NO HIT		
CAHV_CD_02_012_H04	11	NO HIT		NO HIT		
CAHV_CD_02_012_H10	296	NO HIT	ref XP_757243.1	hypothetical protein [Ustilago maydis]	2e-04	F

CAHV_CD_02_013_A02	297	NO HIT		NO HIT		
CAHV_CD_02_013_B04	276	NO HIT	ref XP_002273946.1	hypothetical protein [Vitis vinifera]	3e-15	Р
CAHV_CD_02_013_C10	646	NO HIT		NO HIT		
CAHV_CD_02_013_C12	552	NO HIT	ref XP_002307485.1	predicted protein [Populus trichocarpa]	7e-09	Р
CAHV_CD_02_013_E02	694	NO HIT	ref XP_003035960.1	hypothetical protein [Schizophyllum commune]	3e-79	F
CAHV_CD_02_013_F10	551	NO HIT	ref XP_002315117.1	predicted protein [Populus trichocarpa]	4e-32	Р
CAHV_CD_02_013_H01	371	NO HIT		NO HIT		
CAHV_CD_02_013_H02	377	NO HIT		NO HIT		
CAHV_CD_02_014_A02	634	NO HIT	ref XP_001874079.1	predicted protein [Laccaria bicolor]	3e-53	F
CAHV_CD_02_014_A04	368	NO HIT		NO HIT		
CAHV_CD_02_014_C07	441	NO HIT		NO HIT		
CAHV_CD_02_014_D05	143	NO HIT		NO HIT		
CAHV_CD_02_014_D06	350	NO HIT		NO HIT		
CAHV_CD_02_014_D07	302	NO HIT		NO HIT		
CAHV_CD_02_014_D12	516	NO HIT	ref XP_002395703.1	hypothetical protein [Moniliophthora perniciosa]	6e-08	F
CAHV_CD_02_014_E09	265	NO HIT		NO HIT		
CAHV_CD_02_014_G05	622	NO HIT		NO HIT		
CAHV_CD_02_014_G06	663	NO HIT	ref XP_002144178.1	vacuolar transporter chaperon Vtc1, putative [Penicillium marneffei]	6e-34	F
CAHV_CD_02_014_H02	286	NO HIT		NO HIT		
CAHV_CD_02_015_A06	32	NO HIT		NO HIT		
CAHV_CD_02_015_D03	444	NO HIT		NO HIT		
CAHV_CD_02_015_E01	18	NO HIT		NO HIT		
CAHV_CD_02_015_E04	238	NO HIT	ref XP_002283266.1	hypothetical protein [Vitis vinifera]	3e-17	Р
CAHV_CD_02_015_E08	320	NO HIT		NO HIT		
CAHV_CD_02_015_E10	38	NO HIT		NO HIT		
CAHV_CD_02_015_G03	265	NO HIT		NO HIT		
CAHV_CD_02_015_G11	389	NO HIT	gb ACU16684.1	unknown [Glycine max]	1e-11	Р
CAHV_CD_02_015_H04	611	NO HIT	ref XP_001876152.1	NAD-specific glutamate dehydrogenase [Laccaria bicolor]	2e-65	F
CAHV_CD_02_015_H11	12	NO HIT		NO HIT		
CAHV_CD_02_016_A11	484	NO HIT	ref XP_003008198.1	conserved hypothetical protein [Verticillium albo-atrum VaMs.]	4e-08	F
CAHV_CD_02_016_C09	389	NO HIT		NO HIT		
CAHV_CD_02_016_C10	629	NO HIT		NO HIT		
CAHV_CD_02_016_D07	544	NO HIT	ref XP_001223005.1	hypothetical protein [Chaetomium globosum]	7e-37	F
CAHV_CD_02_016_D10	555	NO HIT		NO HIT		
CAHV_CD_02_016_E02	307	NO HIT		NO HIT		
CAHV_CD_02_016_E03	168	NO HIT		NO HIT		
CAHV_CD_02_016_F10	553	NO HIT	ref XP_001874079.1	predicted protein [Laccaria bicolor]	6e-14	F
CAHV_CD_02_016_H03	381	NO HIT	ref XP_001880867.1	predicted protein [Laccaria bicolor]	1e-53	F
CAHV_CD_02_016_H06	606	NO HIT	emb CAN61270.1	hypothetical protein [Vitis vinifera]	2e-06	Р
CAHV_CD_02_017_A04	545	NO HIT		NO HIT		

CAHV_CD_02_017_B01	140	NO HIT		NO HIT		
CAHV_CD_02_017_B03	309	NO HIT		NO HIT		
CAHV_CD_02_017_B05	514	NO HIT		NO HIT		
CAHV_CD_02_017_B07	679	NO HIT	emb CBI15088.3	unnamed protein product [Vitis vinifera]	1e-59	Р
CAHV_CD_02_017_C01	269	NO HIT	ref XP_002470070.1	60S ribosomal protein L35 [Postia placenta]	8e-31	F
CAHV_CD_02_017_D01	236	NO HIT	dbj BAD12555.1	T(S)14-3-3 protein [Nicotiana tabacum]	1e-08	Р
CAHV_CD_02_017_D05	183	NO HIT		NO HIT		
CAHV_CD_02_017_E01	467	NO HIT		NO HIT		
CAHV_CD_02_017_E12	574	NO HIT		NO HIT		
CAHV_CD_02_017_F02	423	NO HIT	ref XP_001547457.1	hypothetical protein [Botryotinia fuckeliana]	4e-09	F
CAHV_CD_02_017_G03	536	NO HIT	ref XP_385266.1	hypothetical protein [Gibberella zeae]	2e-07	F
CAHV_CD_02_017_H01	194	NO HIT		NO HIT		
CAHV_CD_02_017_H10	665	NO HIT	ref XP_003012384.1	vacuolar H+/Ca2+ exchanger [Arthroderma benhamiae]	5e-28	F
CAHV_CD_02_018_B01	158	NO HIT	ref XP_001839751.2	ATP citrate lyase isoform 2 [Coprinopsis cinerea okayama]	6e-20	F
CAHV_CD_02_018_C06	150	NO HIT		NO HIT		
CAHV_CD_02_018_C09	539	NO HIT	ref XP_001838212.1	phospholipase D [Coprinopsis cinerea okayama]	2e-44	F
CAHV_CD_02_018_D12	465	NO HIT		NO HIT		
CAHV_CD_02_018_E12	582	NO HIT	gb ACV91998.1	hexokinase 1 [Cryptococcus bacillisporus]	3e-82	F
CAHV_CD_02_018_F07	258	NO HIT		NO HIT		
CAHV_CD_02_019_A04	561	NO HIT		NO HIT		
CAHV_CD_02_019_A07	40	NO HIT		NO HIT		
CAHV_CD_02_019_A08	394	NO HIT		NO HIT		
CAHV_CD_02_019_B11	220	NO HIT		NO HIT		
CAHV_CD_02_019_C02	372	NO HIT		NO HIT		
CAHV_CD_02_019_F04	282	NO HIT		NO HIT		
CAHV_CD_02_019_H12	522	NO HIT	emb CBI33677.3	unnamed protein product [Vitis vinifera]	6e-20	Р
CAHV_CD_02_020_A03	195	NO HIT		NO HIT		
CAHV_CD_02_020_A05	200	NO HIT		NO HIT		
CAHV_CD_02_020_B05	235	NO HIT	ref XP_002394239.1	hypothetical protein MPER_05905 [Moniliophthora perniciosa]	9e-05	F
CAHV_CD_02_020_C02	611	NO HIT	ref XP_002282438.1	hypothetical protein [Vitis vinifera]emb	9e-43	Р
CAHV_CD_02_020_C07	605	NO HIT		NO HIT		
CAHV_CD_02_020_C11	533	NO HIT		NO HIT		
CAHV_CD_02_020_C12	11	NO HIT		NO HIT		
CAHV_CD_02_020_G04	610	NO HIT	ref XP_572871.1	actin binding protein [Cryptococcus neoformans var. neoformans]	5e-63	F
CAHV_CD_02_020_H06	617	NO HIT	ref XP_003032521.1	hypothetical protein [Schizophyllum commune]	1e-105	F
CAHV_CD_02_021_A03	244	NO HIT		NO HIT		
CAHV_CD_02_021_B01	508	NO HIT	ref XP_003028157.1	hypothetical protein [Schizophyllum commune]	4e-04	F
CAHV_CD_02_021_B10	118	NO HIT		NO HIT		
CAHV_CD_02_021_B11	493	NO HIT	ref XP_756742.1	hypothetical protein [Ustilago maydis]	2e-43	F
CAHV_CD_02_021_D11	535	NO HIT		NO HIT		

CAHV_CD_02_021_E04	15	NO HIT		NO HIT		
CAHV_CD_02_021_F05	464	NO HIT	ref XP_002391965.1	hypothetical protein [Moniliophthora perniciosa]	3e-36	F
CAHV_CD_02_021_F07	521	NO HIT		NO HIT		
CAHV_CD_02_021_G01	599	NO HIT		NO HIT		
CAHV_CD_02_021_G03	333	NO HIT	ref XP_001873200.1	predicted protein [Laccaria bicolor]	4e-05	F
CAHV_CD_02_021_H04	168	NO HIT		NO HIT		
CAHV_CD_02_021_H07	602	NO HIT	ref XP_001834931.2	aconitase [Coprinopsis cinerea okayama]	9e-27	F
CAHV_CD_02_022_B12	293	NO HIT	ref XP_002462786.1	hypothetical protein [Sorghum bicolor]	5e-20	Р
CAHV_CD_02_022_D04	582	NO HIT	ref XP_001835206.2	thioredoxin-dependent peroxidase [Coprinopsis cinerea okayama]	3e-28	F
CAHV_CD_02_022_D08	16	NO HIT		NO HIT		
CAHV_CD_02_022_E02	203	NO HIT		NO HIT		
CAHV_CD_02_022_E08	386	NO HIT		NO HIT		
CAHV_CD_02_022_F06	571	NO HIT		NO HIT		
CAHV_CD_02_022_G06	266	NO HIT		NO HIT		
CAHV_CD_02_022_G10	78	NO HIT		NO HIT		
CAHV_CD_02_022_H09	578	NO HIT		NO HIT		
CAHV_CD_02_022_H12	333	NO HIT		NO HIT		
CAHV_CD_02_023_B06	22	NO HIT		NO HIT		
CAHV_CD_02_023_B11	413	NO HIT		NO HIT		
CAHV_CD_02_023_D03	604	NO HIT	ref XP_002315179.1	predicted protein [Populus trichocarpa]	2e-24	Р
CAHV_CD_02_023_E07	483	NO HIT		NO HIT		
CAHV_CD_02_023_F07	514	NO HIT	ref XP_367341.1	hypothetical protein [Magnaporthe oryzae]	2e-33	F
CAHV_CD_02_023_F10	73	NO HIT		NO HIT		
CAHV_CD_02_023_G06	677	NO HIT	ref XP_761486.1	hypothetical protein [Ustilago maydis]	3e-70	F
CAHV_CD_02_023_H07	406	NO HIT		NO HIT		
CAHV_CD_02_024_A02	48	NO HIT		NO HIT		
CAHV_CD_02_024_B04	457	NO HIT		NO HIT		
CAHV_CD_02_024_C06	328	NO HIT		NO HIT		
CAHV_CD_02_024_C10	300	NO HIT		NO HIT		
CAHV_CD_02_024_D01	74	NO HIT		NO HIT		
CAHV_CD_02_024_F11	671	NO HIT	ref XP_003031204.1	hypothetical protein [Schizophyllum commune]	7e-43	F
CAHV_CD_02_024_H02	655	NO HIT		NO HIT		
CAHV_CD_02_024_H12	187	NO HIT		NO HIT		
CAHV_CD_02_025_A08	406	NO HIT		NO HIT		
CAHV_CD_02_025_B02	19	NO HIT		NO HIT		
CAHV_CD_02_025_B11	493	NO HIT		NO HIT		
CAHV_CD_02_025_C06	649	NO HIT		NO HIT		
CAHV_CD_02_025_H08	73	NO HIT		NO HIT		
CAHV_CD_02_026_A01	564	NO HIT		NO HIT		
CAHV_CD_02_026_F07	648	NO HIT	ref XP_760306.1	hypothetical protein [Ustilago maydis]	9e-58	F

CAHV_CD_02_026_F09	636	NO HIT	ref XP_001890221.1	predicted protein [Laccaria bicolor]	8e-58	F
CAHV_CD_02_026_F11	656	NO HIT	ref XP_001836649.2	casein kinase subunit II beta [Coprinopsis cinerea okayama]	6e-15	F
CAHV_CD_02_026_G04	643	NO HIT	ref XP_002526642.1	Spotted leaf protein, putative [Ricinus communis]	5e-50	Р
CAHV_CD_02_026_H06	312	NO HIT		NO HIT		
CAHV_CD_02_027_A12	283	NO HIT		NO HIT		
CAHV_CD_02_027_B11	21	NO HIT		NO HIT		
CAHV_CD_02_027_C04	11	NO HIT		NO HIT		
CAHV_CD_02_027_D09	614	NO HIT	ref XP_001874879.1	predicted protein [Laccaria bicolor]	3e-53	F
CAHV_CD_02_027_E02	613	NO HIT	ref XP_001837895.2	GDP-L-fucose synthetase [Coprinopsis cinerea okayama]	9e-54	F
CAHV_CD_02_027_E11	537	NO HIT	ref XP_002273977.1	hypothetical protein [Vitis vinifera]	2e-13	Р
CAHV_CD_02_027_F06	562	NO HIT	gb EFA81590.1	neddylin [Polysphondylium pallidum]	2e-28	F
CAHV_CD_02_027_F12	333	NO HIT		NO HIT		
CAHV_CD_02_027_G10	539	NO HIT		NO HIT		
CAHV_CD_02_027_H07	177	NO HIT		NO HIT		
CAHV_CD_02_028_A11	526	NO HIT		NO HIT		
CAHV_CD_02_028_B06	254	NO HIT		NO HIT		
CAHV_CD_02_028_D05	625	NO HIT	gb ABE01833.1	CK25 [Nicotiana tabacum]	4e-28	Р
CAHV_CD_02_028_D10	555	NO HIT		NO HIT		
CAHV_CD_02_028_E06	455	NO HIT		NO HIT		
CAHV_CD_02_028_F03	20	NO HIT		NO HIT		
CAHV_CD_02_028_F04	282	NO HIT		NO HIT		
CAHV_CD_02_028_H04	72	NO HIT		NO HIT		
CAHV_CD_02_028_H08	176	NO HIT		NO HIT		
CAHV_CD_02_028_H09	18	NO HIT		NO HIT		
CAHV_CD_02_029a_F03	302	NO HIT	ref XP_002512884.1	serine-threonine protein kinase, plant-type, putative [Ricinus communis]	1e-17	Р
CAHV_CD_02_029b_A07	34	NO HIT		NO HIT		
CAHV_CD_02_029b_C06	22	NO HIT		NO HIT		
CAHV_CD_02_029b_D10	28	NO HIT		NO HIT		
CAHV_CD_02_029b_F03	316	NO HIT	ref XP_002512884.1	serine-threonine protein kinase, plant-type, putative [Ricinus communis]	1e-17	Ρ
CAHV_CD_02_030_B12	588	NO HIT	gb ABS86222.1	heat shock protein [Melampsora medusae f. sp. Deltoidis]	4e-05	F
CAHV_CD_02_030_D01	462	NO HIT	ref XP_002601800.1	hypothetical protein [Branchiostoma floridae]	8e-17	F
CAHV_CD_02_030_E08	32	NO HIT		NO HIT		
CAHV_CD_02_030_F10	606	NO HIT		NO HIT		
CAHV_CD_02_030_G01	34	NO HIT		NO HIT		
CAHV_CD_02_030_G03	333	NO HIT		NO HIT		
CAHV_CD_02_030_G10	491	NO HIT		NO HIT		
CAHV_CD_02_030_H05	223	NO HIT		NO HIT		
CAHV_CD_02_030_H10	12	NO HIT		NO HIT		
CAHV_CD_02_031_A08	315	NO HIT		NO HIT		
CAHV_CD_02_031_C03	500	NO HIT	ref XP_775956.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	8e-30	F

CAHV_CD_02_031_C10	482	NO HIT		NO HIT		
CAHV_CD_02_031_D02	579	NO HIT	ref YP_946576.1	hypothetical protein [Arthrobacter aurescens]	9e-21	OUT
CAHV_CD_02_031_D07	535	NO HIT		NO HIT		
CAHV_CD_02_031_E11	623	NO HIT		NO HIT		
CAHV_CD_02_031_G03	276	NO HIT		NO HIT		
CAHV_CD_02_032_A04	463	NO HIT		NO HIT		
CAHV_CD_02_032_B06	238	NO HIT		NO HIT		
CAHV_CD_02_032_B12	554	NO HIT	ref XP_756645.1	hypothetical protein[Ustilago maydis]	9e-49	F
CAHV_CD_02_032_E04	524	NO HIT	ref XP_002599924.1	hypothetical protein [Branchiostoma floridae]	1e-09	OUT
CAHV_CD_02_032_E06	580	NO HIT		NO HIT		
CAHV_CD_02_032_F04	467	NO HIT	emb CAN65048.1	hypothetical protein [Vitis vinifera]	4e-30	Р
CAHV_CD_02_032_F07	70	NO HIT		NO HIT		
CAHV_CD_02_032_H02	482	NO HIT	emb CBI19806.3	unnamed protein product [Vitis vinifera]	2e-20	Р
CAHV_CD_02_032_H08	141	NO HIT		NO HIT		
CAHV_CD_02_033_A01	437	NO HIT	ref XP_001829216.1	DUF89 domain-containing protein [Coprinopsis cinerea okayama]	7e-69	F
CAHV_CD_02_033_B04	144	NO HIT		NO HIT		
CAHV_CD_02_033_C01	653	NO HIT	ref XP_756488.1	hypothetical protein [Ustilago maydis]	4e-45	F
CAHV_CD_02_033_C02	348	NO HIT	gb ABL59970.1	lectin [Nicotiana tabacum]	7e-19	Р
CAHV_CD_02_033_C04	407	NO HIT		NO HIT		
CAHV_CD_02_033_D03	459	NO HIT		NO HIT		
CAHV_CD_02_033_D10	578	NO HIT	ref XP_760987.1	hypothetical protein [Ustilago maydis]	2e-05	F
CAHV_CD_02_033_D12	573	NO HIT		NO HIT		
CAHV_CD_02_033_G02	436	NO HIT		NO HIT		
CAHV_CD_02_033_G05	522	NO HIT	ref XP_002527984.1	Ubiquinone biosynthesis protein coq-8, putative [Ricinus communis]	1e-35	Р
CAHV_CD_02_033_G06	288	NO HIT		NO HIT		
CAHV_CD_02_033_G09	562	NO HIT		NO HIT		
CAHV_CD_02_033_H10	537	NO HIT	ref XP_760521.1	farnesyl-diphosphate farnesyltransferase [Ustilago maydis]	5e-42	F
CAHV_CD_02_034_A10	251	NO HIT		NO HIT		
CAHV_CD_02_034_A12	528	NO HIT	ref XP_002305052.1	predicted protein [Populus trichocarpa]	1e-16	Р
CAHV_CD_02_034_B09	13	NO HIT		NO HIT		
CAHV_CD_02_034_B11	351	NO HIT		NO HIT		
CAHV_CD_02_034_C05	527	NO HIT	emb CBI32449.3	unnamed protein product [Vitis vinifera]	1e-57	Р
CAHV_CD_02_034_D09	21	NO HIT		NO HIT		
CAHV_CD_02_034_E06	278	NO HIT		NO HIT		
CAHV_CD_02_034_G02	323	NO HIT		NO HIT		
CAHV_CD_02_034_G07	655	NO HIT	ref XP_003036150.1	hypothetical protein [Schizophyllum commune]	8e-25	F
CAHV_CD_02_034_G09	440	NO HIT		NO HIT		
CAHV_CD_02_034_G11	382	NO HIT		NO HIT		
CAHV_CD_02_034_H03	115	NO HIT		NO HIT		
CAHV_CD_02_035_A10	30	NO HIT		NO HIT		

CAHV_CD_02_035_B06	212	NO HIT	ref XP_003033807.1	hypothetical protein [Schizophyllum commune]	3e-14	F
CAHV_CD_02_035_C03	203	NO HIT		NO HIT		
CAHV_CD_02_035_C04	588	NO HIT		NO HIT		
CAHV_CD_02_035_C11	24	NO HIT		NO HIT		
CAHV_CD_02_035_E06	363	NO HIT		NO HIT		
CAHV_CD_02_035_E08	470	NO HIT	ref XP_002273407.1	hypothetical protein [Vitis vinifera]	7e-35	Р
CAHV_CD_02_035_F01	637	NO HIT		NO HIT		
CAHV_CD_02_035_F02	612	NO HIT		NO HIT		
CAHV_CD_02_035_F03	636	NO HIT	ref XP_002904873.1	proline iminopeptidase [Phytophthora infestans]	6e-62	F
CAHV_CD_02_035_F06	570	NO HIT	ref XP_001836426.2	hypothetical protein [Coprinopsis cinerea okayama]	3e-06	F
CAHV_CD_02_035_G10	306	NO HIT		NO HIT		
CAHV_CD_02_035_G12	582	NO HIT	ref XP_001838739.1	hypothetical protein [Coprinopsis cinerea okayama]	9e-42	F
CAHV_CD_02_036_A12	489	NO HIT		NO HIT		
CAHV_CD_02_036_C01	148	NO HIT		NO HIT		
CAHV_CD_02_036_C03	486	NO HIT	ref XP_001876633.1	predicted protein [Laccaria bicolor]	2e-36	F
CAHV_CD_02_036_C05	406	NO HIT		NO HIT		
CAHV_CD_02_036_C07	339	NO HIT		NO HIT		
CAHV_CD_02_036_E12	579	NO HIT	ref XP_002530297.1	serine-threonine protein kinase, plant-type, putative [Ricinus communis]	3e-11	Р
CAHV_CD_02_036_F02	546	NO HIT	ref XP_001794812.1	hypothetical protein [Phaeosphaeria nodorum]	2e-63	F
CAHV_CD_02_036_G02	43	NO HIT		NO HIT		
CAHV_CD_02_036_H11	413	NO HIT		NO HIT		
CAHV_CD_02_036_H12	15	NO HIT		NO HIT		
CAHV_CD_02_037_A05	12	NO HIT		NO HIT		
CAHV_CD_02_037_B01	612	NO HIT		NO HIT		
CAHV_CD_02_037_B02	607	NO HIT		NO HIT		
CAHV_CD_02_037_B07	362	NO HIT	ref XP_003030077.1	hypothetical protein [Schizophyllum commune]	2e-18	F
CAHV_CD_02_037_D02	30	NO HIT		NO HIT		
CAHV_CD_02_037_D11	156	NO HIT		NO HIT		
CAHV_CD_02_037_E05	474	NO HIT		NO HIT		
CAHV_CD_02_037_F11	387	NO HIT		NO HIT		
CAHV_CD_02_037_F12	25	NO HIT		NO HIT		
CAHV_CD_02_037_G04	322	NO HIT		NO HIT		
CAHV_CD_02_037_H02	595	NO HIT		NO HIT		
CAHV_CD_02_037_H03	289	NO HIT		NO HIT		
CAHV_CD_02_038_A02	620	NO HIT	ref XP_003036497.1	hypothetical protein [Schizophyllum commune]	1e-17	F
CAHV_CD_02_038_A03	251	NO HIT		NO HIT		
CAHV_CD_02_038_A06	17	NO HIT		NO HIT		
CAHV_CD_02_038_B03	601	NO HIT	ref NP_187969.1	calmodulin-binding family protein [Arabidopsis thaliana]	4e-21	Р
CAHV_CD_02_038_D02	297	NO HIT		NO HIT		
CAHV_CD_02_038_E04	20	NO HIT		NO HIT		

CAHV_CD_02_038_E09	255	NO HIT		NO HIT		
CAHV_CD_02_038_F06	645	NO HIT	ref XP_002305832.1	predicted protein [Populus trichocarpa]	2e-24	Р
CAHV_CD_02_039_A08	364	NO HIT	ref XP_002319684.1	predicted protein [Populus trichocarpa]	3e-04	Р
CAHV_CD_02_039_B04	20	NO HIT		NO HIT		
CAHV_CD_02_039_D02	648	NO HIT	emb CBI21495.3	unnamed protein product [Vitis vinifera]	4e-12	Р
CAHV_CD_02_039_D12	18	NO HIT		NO HIT		
CAHV_CD_02_039_F04	449	NO HIT		NO HIT		
CAHV_CD_02_039_F09	453	NO HIT	ref XP_002305779.1	predicted protein [Populus trichocarpa]	3e-12	Р
CAHV_CD_02_039_G12	489	NO HIT		NO HIT		
CAHV_CD_02_039_H04	665	NO HIT	ref XP_568883.1	histidinol-phosphate transaminase [Cryptococcus neoformans var. neoformans]	9e-42	F
CAHV_CD_02_039_H09	539	NO HIT	ref XP_001662943.1	hypothetical protein [Aedes aegypti]	9e-32	OUT
CAHV_CD_02_040_A01	12	NO HIT		NO HIT		
CAHV_CD_02_040_A10	590	NO HIT	ref XP_002321542.1	predicted protein [Populus trichocarpa]	3e-36	Р
CAHV_CD_02_040_D01	311	NO HIT		NO HIT		
CAHV_CD_02_040_D10	21	NO HIT		NO HIT		
CAHV_CD_02_040_D11	461	NO HIT		NO HIT		
CAHV_CD_02_040_G05	661	NO HIT	ref XP_505378.1	YALI0F13541p [Yarrowia lipolytica]	4e-92	F
CAHV_CD_02_040_G09	620	NO HIT	gb AAQ20091.1	S1 self-incompatibility locus-linked pollen G211 protein [Petunia integrifolia subsp. inflata]	8e-13	Р
CAHV_CD_02_041_C09	313	NO HIT		NO HIT		
CAHV_CD_02_041_F07	297	NO HIT		NO HIT		
CAHV_CD_02_041_G11	21	NO HIT		NO HIT		
CAHV_CD_02_041_H01	298	NO HIT		NO HIT		
CAHV_CD_02_041_H12	472	NO HIT	ref XP_001731421.1	hypothetical protein [Malassezia globosa]	5e-31	F
CAHV_CD_02_042_A05	566	NO HIT		NO HIT		
CAHV_CD_02_042_B04	409	NO HIT		NO HIT		
CAHV_CD_02_042_B06	288	NO HIT	gb ACU18575.1	unknown [Glycine max]	5e-04	Р
CAHV_CD_02_042_B08	652	NO HIT	ref XP_002330012.1	hypothetical protein [Populus trichocarpa]	6e-04	Р
CAHV_CD_02_042_C11	17	NO HIT		NO HIT		
CAHV_CD_02_042_E11	39	NO HIT		NO HIT		
CAHV_CD_02_042_G05	34	NO HIT		NO HIT		
CAHV_CD_02_042_G10	218	NO HIT		NO HIT		
CAHV_CD_02_043_A02	257	NO HIT		NO HIT		
CAHV_CD_02_043_B05	528	NO HIT	ref XP_003035236.1	hypothetical protein [Schizophyllum commune]	6e-22	F
CAHV_CD_02_043_C04	378	NO HIT		NO HIT		
CAHV_CD_02_043_D04	656	NO HIT	ref XP_002837242.1	hypothetical protein [Tuber melanosporum]	1e-05	F
CAHV_CD_02_043_D09	453	NO HIT		NO HIT		
CAHV_CD_02_043_E05	21	NO HIT		NO HIT		
CAHV_CD_02_043_E10	404	NO HIT		NO HIT		
CAHV_CD_02_043_E12	333	NO HIT		NO HIT		
CAHV_CD_02_043_F10	635	NO HIT		NO HIT		

CAHV_CD_02_043_G01	165	NO HIT		NO HIT		
CAHV_CD_02_043_H06	610	NO HIT	ref XP_777601.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	2e-20	F
CAHV_CD_02_044_A01	293	NO HIT		NO HIT		
CAHV_CD_02_044_A08	659	NO HIT		NO HIT		
CAHV_CD_02_044_A09	209	NO HIT		NO HIT		
CAHV_CD_02_044_A12	28	NO HIT		NO HIT		
CAHV_CD_02_044_B01	636	NO HIT	gb AAL73237.1 AF338438_1	ADP-ribosylation factor-like protein [Coprinopsis cinerea]	1e-52	F
CAHV_CD_02_044_B12	224	NO HIT	ref XP_002877729.1	hypothetical protein [Arabidopsis lyrata subsp. lyrata]	1e-06	Р
CAHV_CD_02_044_D02	545	NO HIT	gb AAU95203.1	protein S [Catharanthus roseus]	3e-70	Р
CAHV_CD_02_044_E04	588	NO HIT	ref XP_001729918.1	hypothetical protein [Malassezia globosa]	8e-04	F
CAHV_CD_02_044_G10	22	NO HIT		NO HIT		
CAHV_CD_02_044_G12	504	NO HIT	ref XP_003030407.1	hypothetical protein [Schizophyllum commune]	1e-49	F
CAHV_CD_02_044_H11	14	NO HIT		NO HIT		
CAHV_CD_02_045_A01	23	NO HIT		NO HIT		
CAHV_CD_02_045_A10	170	NO HIT		NO HIT		
CAHV_CD_02_045_B08	20	NO HIT		NO HIT		
CAHV_CD_02_045_B11	394	NO HIT		NO HIT		
CAHV_CD_02_045_C02	518	NO HIT	ref XP_001729577.1	hypothetical protein[Malassezia globosa]	5e-10	F
CAHV_CD_02_045_C07	99	NO HIT		NO HIT		
CAHV_CD_02_045_C10	30	NO HIT		NO HIT		
CAHV_CD_02_045_D05	640	NO HIT	ref XP_002840826.1	hypothetical protein [Tuber melanosporum]	5e-15	F
CAHV_CD_02_045_E04	247	NO HIT	ref XP_003033807.1	hypothetical protein [Schizophyllum commune]	1e-09	F
CAHV_CD_02_045_E08	331	NO HIT		NO HIT		
CAHV_CD_02_045_E10	360	NO HIT		NO HIT		
CAHV_CD_02_045_F05	566	NO HIT	ref XP_003037836.1	hypothetical protein [Schizophyllum commune]	2e-44	F
CAHV_CD_02_045_F10	587	NO HIT	ref XP_002469001.1	60S ribosomal protein [Postia placenta]	1e-61	F
CAHV_CD_02_045_F11	280	NO HIT		NO HIT		
CAHV_CD_02_045_H06	470	NO HIT	ref YP_001899506.1	thioesterase superfamily protein [Ralstonia pickettii]	4e-12	OUT
CAHV_CD_02_045_H11	282	NO HIT	ref XP_002315142.1	predicted protein [Populus trichocarpa]	1e-05	Р
CAHV_CD_02_046_A10	637	NO HIT	ref XP_003030873.1	hypothetical protein[Schizophyllum commune]	4e-29	F
CAHV_CD_02_046_B07	265	NO HIT		NO HIT		
CAHV_CD_02_046_B11	621	NO HIT		NO HIT		
CAHV_CD_02_046_C10	187	NO HIT		NO HIT		
CAHV_CD_02_046_D06	330	NO HIT		NO HIT		
CAHV_CD_02_046_E02	630	NO HIT	ref XP_762420.1	hypothetical protein [Ustilago maydis]	1e-34	F
CAHV_CD_02_046_E07	220	NO HIT		NO HIT		
CAHV_CD_02_046_E09	590	NO HIT		NO HIT		
CAHV_CD_02_046_G04	12	NO HIT		NO HIT		
CAHV_CD_02_046_G07	11	NO HIT		NO HIT		
CAHV_CD_02_046_G12	379	NO HIT		NO HIT		

CAHV_CD_02_047a_A01	14	NO HIT		NO HIT		
CAHV_CD_02_047a_C05	11	NO HIT		NO HIT		
CAHV_CD_02_047a_E08	234	NO HIT		NO HIT		
CAHV_CD_02_047a_F03	179	NO HIT		NO HIT		
CAHV_CD_02_047a_H01	404	NO HIT	emb CBI31858.3	unnamed protein product [Vitis vinifera]	2e-21	Р
CAHV_CD_02_048a_F02	590	NO HIT	ref XP_001883490.1	predicted protein [Laccaria bicolor]	6e-49	F
CAHV_CD_02_048a_F07	513	NO HIT	ref XP_001731230.1	hypothetical protein [Malassezia globosa]	7e-67	F
CAHV_CD_02_048a_H03	381	NO HIT		NO HIT		
CAHV_CD_02_048a_H07	575	NO HIT	ref YP_001868847.1	O-methyltransferase family protein [Nostoc punctiforme]	2e-22	OUT
CAHV_CD_02_049_A07	565	NO HIT		NO HIT		
CAHV_CD_02_049_A10	11	NO HIT		NO HIT		
CAHV_CD_02_049_B06	223	NO HIT		NO HIT		
CAHV_CD_02_049_B12	621	NO HIT		NO HIT		
CAHV_CD_02_049_C01		NO HIT	emb CBI28640.3	unnamed protein product [Vitis vinifera]	4e-05	Р
CAHV_CD_02_049_D01	638	NO HIT		NO HIT		
CAHV_CD_02_049_D03	341	NO HIT		NO HIT		
CAHV_CD_02_049_D05	621	NO HIT	ref XP_756320.1	hypothetical protein [Ustilago maydis]	1e-18	F
CAHV_CD_02_049_D08	67	NO HIT		NO HIT		
CAHV_CD_02_049_F01	646	NO HIT		NO HIT		
CAHV_CD_02_049_F12	392	NO HIT		NO HIT		
CAHV_CD_02_049_G02	629	NO HIT	gb ABF70103.1	glucose-inhibited division A family protein [Musa balbisiana]	1e-102	Р
CAHV_CD_02_049_G12	633	NO HIT		NO HIT		
CAHV_CD_02_049_H08	200	NO HIT		NO HIT		
CAHV_CD_02_050_B05	643	NO HIT	ref XP_002475689.1	predicted protein [Postia placenta]	1e-14	F
CAHV_CD_02_050_B08	497	NO HIT	emb CAN73071.1	hypothetical protein [Vitis vinifera]	2e-05	Р
CAHV_CD_02_050_D10	14	NO HIT		NO HIT		
CAHV_CD_02_050_D12	23	NO HIT		NO HIT		
CAHV_CD_02_050_F02	28	NO HIT		NO HIT		
CAHV_CD_02_050_F06	537	NO HIT		NO HIT		
CAHV_CD_02_050_G06	237	NO HIT		NO HIT		
CAHV_CD_02_050_G07	64	NO HIT		NO HIT		
CAHV_CD_02_050_G10	13	NO HIT		NO HIT		
CAHV_CD_02_050_G12	11	NO HIT		NO HIT		
CAHV_CD_02_050_H08	594	NO HIT	ref XP_002390341.1	hypothetical protein [Moniliophthora perniciosa]	7e-55	F
CAHV_CD_02_050_H12	608	NO HIT	ref XP_003035401.1	hypothetical protein [Schizophyllum commune]	1e-43	F
CAHV_CD_02_151_A03	214	NO HIT		NO HIT		
CAHV_CD_02_151_B01	27	NO HIT		NO HIT		
CAHV_CD_02_151_B06	520	NO HIT		NO HIT		
CAHV_CD_02_151_B09	81	NO HIT		NO HIT		
CAHV_CD_02_151_F06	39	NO HIT		NO HIT		

CAHV_CD_02_151_G11	27	NO HIT		NO HIT		
CAHV_CD_02_152_A04	536	NO HIT		NO HIT		
CAHV_CD_02_152_B05	538	NO HIT	gb ACZ59443.1	hypothetical protein [Pleurotus ostreatus]	2e-33	F
CAHV_CD_02_152_E06	457	NO HIT	ref XP_761249.1	hypothetical protein [Ustilago maydis]	3e-10	F
CAHV_CD_02_152_E11	347	NO HIT	gb ABW72074.1	TE3 [Blumeria graminis f. sp. hordei]	5e-04	F
CAHV_CD_02_152_G05	15	NO HIT		NO HIT		
CAHV_CD_02_152_H05	23	NO HIT		NO HIT		
CAHV_CD_02_153_A02	564	NO HIT		NO HIT		
CAHV_CD_02_153_A11	617	NO HIT	ref XP_002473277.1	candidate multicopper oxidase [Postia placenta]	9e-49	F
CAHV_CD_02_153_D01	448	NO HIT	ref XP_759641.1	hypothetical protein [Ustilago maydis]	5e-14	F
CAHV_CD_02_153_D11	487	NO HIT		NO HIT		
CAHV_CD_02_153_E02	473	NO HIT		NO HIT		
CAHV_CD_02_153_E09	165	NO HIT		NO HIT		
CAHV_CD_02_153_F03	479	NO HIT	ref XP_002911240.1	40S ribosomal protein S7 [Coprinopsis cinerea okayama]	4e-36	F
CAHV_CD_02_153_F04	107	NO HIT		NO HIT		
CAHV_CD_02_153_G03	12	NO HIT		NO HIT		
CAHV_CD_02_154_A06	475	NO HIT	ref XP_387643.1	hypothetical protein [Gibberella zeae]	9e-40	F
CAHV_CD_02_154_B02	287	NO HIT		NO HIT		
CAHV_CD_02_154_D06	296	NO HIT		NO HIT		
CAHV_CD_02_154_F06	343	NO HIT		NO HIT		
CAHV_CD_02_154_G08	334	NO HIT		NO HIT		
CAHV_CD_02_155_A06	11	NO HIT		NO HIT		
CAHV_CD_02_155_A10	593	NO HIT	ref XP_001840207.1	hypothetical protein [Coprinopsis cinerea okayama]	7e-04	F
CAHV_CD_02_155_A11	386	NO HIT		NO HIT		
CAHV_CD_02_155_B05	537	NO HIT		NO HIT		
CAHV_CD_02_155_B10	11	NO HIT		NO HIT		
CAHV_CD_02_155_C10	17	NO HIT		NO HIT		
CAHV_CD_02_155_F08	573	NO HIT	gb AAP42832.1	chitinase [Puccinia triticina]	2e-10	F
CAHV_CD_02_155_G08	582	NO HIT		NO HIT		
CAHV_CD_02_155_H04	424	NO HIT		NO HIT		
CAHV_CD_02_156_A05	550	NO HIT	ref XP_002275162.1	hypothetical protein [Vitis vinifera]	7e-32	Р
CAHV_CD_02_156_B06	560	NO HIT	ref XP_001836196.2	eukaryotic translation initiation factor 1A [Coprinopsis cinerea okayama]	2e-34	F
CAHV_CD_02_156_B09	189	NO HIT		NO HIT		
CAHV_CD_02_156_C05	33	NO HIT		NO HIT		
CAHV_CD_02_156_C12	426	NO HIT		NO HIT		
CAHV_CD_02_156_E03	574	NO HIT		NO HIT		
CAHV_CD_02_156_F02	178	NO HIT		NO HIT		
CAHV_CD_02_156_F08	617	NO HIT	ref XP_001837402.1	hypothetical protein [Coprinopsis cinerea okayama]	3e-11	F
CAHV_CD_02_156_F09	20	NO HIT		NO HIT		
CAHV_CD_02_156_F10	543	NO HIT	emb CBI38538.3	unnamed protein product [Vitis vinifera]	3e-26	Р

CAHV_CD_02_156_G01	581	NO HIT	ref XP_001258306.1	glycosyl hydrolase, putative [Neosartorya fischeri]	1e-61	F
CAHV_CD_02_156_G09	591	NO HIT		NO HIT		
CAHV_CD_02_156_H02	88	NO HIT		NO HIT		
CAHV_CD_02_156_H05	534	NO HIT	gb EEH46348.1	hypothetical protein [Paracoccidioides brasiliensis]	2e-14	F
CAHV_CD_02_157_B03	574	NO HIT	ref XP_760084.1	hypothetical protein [Ustilago maydis]	6e-53	F
CAHV_CD_02_157_B07	548	NO HIT		NO HIT		
CAHV_CD_02_157_B09	338	NO HIT		NO HIT		
CAHV_CD_02_157_D03	488	NO HIT	ref XP_572038.1	malate dehydrogenase [Cryptococcus neoformans var. neoformans]	6e-23	F
CAHV_CD_02_157_D10	13	NO HIT		NO HIT		
CAHV_CD_02_157_F02	415	NO HIT	ref XP_002312375.1	predicted protein [Populus trichocarpa]	3e-34	Р
CAHV_CD_02_157_G03	552	NO HIT		NO HIT		
CAHV_CD_02_157_G04	275	NO HIT		NO HIT		
CAHV_CD_02_157_G07	80	NO HIT		NO HIT		
CAHV_CD_02_157_G09	531	NO HIT		NO HIT		
CAHV_CD_02_157_G10	400	NO HIT	ref XP_001874301.1	predicted protein [Laccaria bicolor]	3e-27	F
CAHV_CD_02_157_H07	280	NO HIT		NO HIT		
CAHV_CD_02_157_H08	535	NO HIT	ref XP_001873273.1	amino acid permease [Laccaria bicolor]	2e-08	F
CAHV_CD_02_157_H10	428	NO HIT		NO HIT		
CAHV_CD_02_158_A01	545	NO HIT	ref XP_567834.1	RNA binding protein [Cryptococcus neoformans var. neoformans]	3e-54	F
CAHV_CD_02_158_B07	565	NO HIT		hypothetical protein [Schizophyllum commune]	5e-57	F
CAHV_CD_02_158_B11	297	NO HIT	emb CAF32328.1	amino acid transporter [Uromyces viciae-fabae]	5e-04	F
CAHV_CD_02_158_D01	519	NO HIT		NO HIT		
CAHV_CD_02_158_E02	306	NO HIT	ref XP_761979.1	hypothetical protein [Ustilago maydis]	1e-11	F
CAHV_CD_02_158_E09	364	NO HIT		NO HIT		
CAHV_CD_02_158_F10	177	NO HIT		NO HIT		
CAHV_CD_02_158_G04	517	NO HIT		NO HIT		
CAHV_CD_02_158_G05	290	NO HIT	ref XP_003001192.1	golgi apyrase [Verticillium albo-atrum VaMs.102]	7e-19	F
CAHV_CD_02_158_H06	421	NO HIT		NO HIT		
CAHV_CD_02_159_A07	313	NO HIT		NO HIT		
CAHV_CD_02_159_A12	467	NO HIT	ref XP_001381845.1	similar to proline synthetase (bacterial), [Monodelphis domestica]	3e-21	OUT
CAHV_CD_02_159_B05	518	NO HIT		NO HIT		
CAHV_CD_02_159_B12	529	NO HIT	emb CBI22269.3	unnamed protein product [Vitis vinifera]	2e-48	Р
CAHV_CD_02_159_C03	449	NO HIT	ref XP_001243364.1	conserved hypothetical protein [Coccidioides immitis]	1e-12	F
CAHV_CD_02_159_C09	459	NO HIT		NO HIT		
CAHV_CD_02_159_D05	237	NO HIT		NO HIT		
CAHV_CD_02_159_D07	263	NO HIT		NO HIT		
CAHV_CD_02_159_E09	95	NO HIT		NO HIT		
CAHV_CD_02_159_F12	580	NO HIT	ref XP_756601.1	hypothetical protein [Ustilago maydis]	1e-20	F
CAHV_CD_02_159_G01	554	NO HIT		NO HIT		
CAHV_CD_02_159_G10	586	NO HIT	ref XP_001835254.1	glucose transporter [Coprinopsis cinerea okayama]	3e-65	F

CAHV_CD_02_160_A01	250	NO HIT		NO HIT		
CAHV_CD_02_160_C02	179	NO HIT		NO HIT		
CAHV_CD_02_160_C07	21	NO HIT		NO HIT		
CAHV_CD_02_160_D11	22	NO HIT		NO HIT		
CAHV_CD_02_160_E09	200	NO HIT		NO HIT		
CAHV_CD_02_160_F02	541	NO HIT	ref XP_964103.1	UDP-N-acetylglucosamine pyrophosphorylase [Neurospora crassa]	2e-40	F
CAHV_CD_02_160_F04	23	NO HIT		NO HIT		
CAHV_CD_02_160_G08	157	NO HIT	ref XP_758573.1	hypothetical protein [Ustilago maydis]	5e-09	F
CAHV_CD_02_160_H08	193	NO HIT		NO HIT		
CAHV_CD_02_160_H10	319	NO HIT	ref XP_001877132.1	predicted protein [Laccaria bicolor]	2e-16	F
CAHV_CD_02_161_E04	566	NO HIT		NO HIT		
CAHV_CD_02_161_E12	521	NO HIT		NO HIT		
CAHV_CD_02_161_F01	28	NO HIT		NO HIT		
CAHV_CD_02_161_G02	190	NO HIT		NO HIT		
CAHV_CD_02_161_G10	150	NO HIT		NO HIT		
CAHV_CD_02_161_H05	27	NO HIT		NO HIT		
CAHV_CD_02_162_B03	566	NO HIT	emb CBI29042.3	unnamed protein product [Vitis vinifera]	2e-35	Р
CAHV_CD_02_162_C03	312	NO HIT		NO HIT		
CAHV_CD_02_162_E09	16	NO HIT		NO HIT		
CAHV_CD_02_162_E11	568	NO HIT		NO HIT		
CAHV_CD_02_162_F08	154	NO HIT		NO HIT		
CAHV_CD_02_162_F09	379	NO HIT		NO HIT		
CAHV_CD_02_162_F12	484	NO HIT		NO HIT		
CAHV_CD_02_162_G03	117	NO HIT		NO HIT		
CAHV_CD_02_162_G12	11	NO HIT		NO HIT		
CAHV_CD_02_162_H02	18	NO HIT		NO HIT		
CAHV_CD_02_162_H05	466	NO HIT		NO HIT		
CAHV_CD_02_163_C01	601	NO HIT	ref XP_001633203.1	predicted protein [Nematostella vectensis]	1e-08	F
CAHV_CD_02_163_D08	13	NO HIT		NO HIT		
CAHV_CD_02_163_D10	124	NO HIT	emb CAD23442.1	putative RAD1 protein [Pleurotus ostreatus]	9e-08	F
CAHV_CD_02_163_E08	29	NO HIT		NO HIT		
CAHV_CD_02_163_E10	393	NO HIT	ref XP_001835890.2	pre-mRNA splicing factor [Coprinopsis cinerea okayama]	3e-23	F
CAHV_CD_02_163_E11	349	NO HIT		NO HIT		
CAHV_CD_02_163_F04	476	NO HIT	ref XP_001875922.1	predicted protein [Laccaria bicolor]	3e-23	F
CAHV_CD_02_163_G10	15	NO HIT		NO HIT		
CAHV_CD_02_163_H04	22	NO HIT		NO HIT		
CAHV_CD_02_163_H08	161	NO HIT	tpe CBF87258.1	conserved hypothetical protein [Aspergillus nidulans]	2e-07	F
CAHV_CD_02_164_A12	580	NO HIT	ref XP_001878508.1	predicted protein [Laccaria bicolor S238N-H82]	3e-05	F
CAHV_CD_02_164_C02	275	NO HIT		NO HIT		
CAHV_CD_02_164_C06	486	NO HIT		NO HIT		

CAHV_CD_02_164_D07	106	NO HIT		NO HIT		
CAHV_CD_02_164_E05	187	NO HIT		NO HIT		
CAHV_CD_02_164_G01	155	NO HIT		NO HIT		
CAHV_CD_02_164_G07	196	NO HIT		NO HIT		
CAHV_CD_02_164_G12	494	NO HIT	ref XP_002280959.1	PREDICTED: hypothetical protein [Vitis vinifera]	4e-42	Р
CAHV_CD_02_164_H04	20	NO HIT		NO HIT		
CAHV_CD_02_164_H05	289	NO HIT		NO HIT		
CAHV_CD_02_164_H11	71	NO HIT		NO HIT		
CAHV_CD_02_164_H12	21	NO HIT		NO HIT		
CAHV_CD_02_165_A03	557	NO HIT		NO HIT		
CAHV_CD_02_165_A05	218	NO HIT		NO HIT		
CAHV_CD_02_165_B01	445	NO HIT		NO HIT		
CAHV_CD_02_165_B06	443	NO HIT		NO HIT		
CAHV_CD_02_165_C01	361	NO HIT	ref XP_003029232.1	hypothetical protein [Schizophyllum commune]	5e-11	F
CAHV_CD_02_165_C12	47	NO HIT		NO HIT		
CAHV_CD_02_165_D05	316	NO HIT	ref XP_002323598.1	predicted protein [Populus trichocarpa]	1e-40	Р
CAHV_CD_02_165_F02	11	NO HIT		NO HIT		
CAHV_CD_02_165_F11	347	NO HIT		NO HIT		
CAHV_CD_02_165_G05	199	NO HIT		NO HIT		
CAHV_CD_02_165_H07	279	NO HIT		NO HIT		
CAHV_CD_02_166_A04	450	NO HIT		NO HIT		
CAHV_CD_02_166_E04	459	NO HIT	ref XP_002472807.1	predicted protein [Postia placenta]	1e-20	F
CAHV_CD_02_166_F05	360	NO HIT	ref XP_571033.1	glyoxal oxidase precursor [Cryptococcus neoformans var. neoformans]	3e-10	F
CAHV_CD_02_166_G12	193	NO HIT		NO HIT		
CAHV_CD_02_166_H08	441	NO HIT	gb ABS86406.1	rust transferred protein [Melampsora medusae f. sp. deltoidis]	2e-21	F
CAHV_CD_02_166_H12	137	NO HIT		NO HIT		
CAHV_CD_02_167_A01	28	NO HIT		NO HIT		
CAHV_CD_02_167_B09	117	NO HIT		NO HIT		
CAHV_CD_02_167_C03	186	NO HIT		NO HIT		
CAHV_CD_02_167_C05	17	NO HIT		NO HIT		
CAHV_CD_02_167_D01	198	NO HIT		NO HIT		
CAHV_CD_02_167_D02	417	NO HIT		NO HIT		
CAHV_CD_02_167_D05	562	NO HIT		NO HIT		
CAHV_CD_02_167_E03	329	NO HIT		NO HIT		
CAHV_CD_02_167_E07	547	NO HIT	ref XP_002325719.1	predicted protein [Populus trichocarpa]	5e-15	Р
CAHV_CD_02_167_F05	176	NO HIT		NO HIT		
CAHV_CD_02_167_G03	13	NO HIT		NO HIT		
CAHV_CD_02_167_G11	125	NO HIT		NO HIT		
CAHV_CD_02_167_H03	225	NO HIT		NO HIT		
CAHV_CD_02_167_H08	614	NO HIT		NO HIT		

CAHV_CD_02_168_A06	502	NO HIT	ref XP_002392848.1	hypothetical protein [Moniliophthora perniciosa]	4e-19	F
CAHV_CD_02_168_A08	241	NO HIT		NO HIT		
CAHV_CD_02_168_A12	434	NO HIT		NO HIT		
CAHV_CD_02_168_E03	78	NO HIT		NO HIT		
CAHV_CD_02_168_E12	159	NO HIT		NO HIT		
CAHV_CD_02_168_F04	28	NO HIT		NO HIT		
CAHV_CD_02_168_F09	94	NO HIT		NO HIT		
CAHV_CD_02_168_H05	390	NO HIT		NO HIT		
CAHV_CD_02_168_H08	27	NO HIT		NO HIT		
CAHV_CD_02_169_C03	574	NO HIT	ref XP_002527229.1	lyase, putative [Ricinus communis]	4e-71	F
CAHV_CD_02_169_C04	385	NO HIT		NO HIT		
CAHV_CD_02_169_E08	229	NO HIT		NO HIT		
CAHV_CD_02_169_F01	249	NO HIT		NO HIT		
CAHV_CD_02_169_F09	18	NO HIT		NO HIT		
CAHV_CD_02_169_G10	14	NO HIT		NO HIT		
CAHV_CD_02_169_H11	328	NO HIT		NO HIT		
CAHV_CD_02_170_B01	11	NO HIT		NO HIT		
CAHV_CD_02_170_C02	14	NO HIT		NO HIT		
CAHV_CD_02_170_E01	437	NO HIT	tpe CBF76862.1	COX1 assembly protein Shy1, putative [Aspergillus nidulans]	2e-05	F
CAHV_CD_02_170_G01	387	NO HIT	ref XP_001887182.1	predicted protein [Laccaria bicolor]	9e-13	F
CAHV_CD_02_170_G02	229	NO HIT	ref XP_001836682.1	macrofage activating glycoprotein [Coprinopsis cinerea okayama]	1e-18	F
CAHV_CD_02_170_G10	155	NO HIT	gb ABV90190.1	NBS-LRR type disease resistance protein [Ipomoea batatas]	2e-07	Р
CAHV_CD_02_170_H02	463	NO HIT	ref XP_001802369.1	hypothetical protein [Phaeosphaeria nodorum SN15]	1e-16	F
CAHV_CD_02_170_H05	509	NO HIT		NO HIT		
CAHV_CD_02_171_A01	22	NO HIT		NO HIT		
CAHV_CD_02_171_A09	52	NO HIT		NO HIT		
CAHV_CD_02_171_B02	192	NO HIT		NO HIT		
CAHV_CD_02_171_B11	14	NO HIT		NO HIT		
CAHV_CD_02_171_C01	255	NO HIT		NO HIT		
CAHV_CD_02_171_C08	590	NO HIT	gb ADE10075.1	F1 ATPase alpha [Tremella fuciformis]	1e-49	F
CAHV_CD_02_171_C12	388	NO HIT	ref XP_002265457.1	PREDICTED: hypothetical protein [Vitis vinifera]	1e-30	Р
CAHV_CD_02_171_D01	502	NO HIT		NO HIT		
CAHV_CD_02_171_E07	582	NO HIT	ref XP_001886950.1	predicted protein [Laccaria bicolor S238N-H82]	2e-07	F
CAHV_CD_02_171_E11	272	NO HIT		NO HIT		
CAHV_CD_02_171_F03	82	NO HIT		NO HIT		
CAHV_CD_02_171_G02	147	NO HIT	ref XP_002267723.1	PREDICTED: hypothetical protein [Vitis vinifera]	6e-10	Р
CAHV_CD_02_171_G08	611	NO HIT	ref XP_003007993.1	synaptobrevin [Verticillium albo-atrum VaMs.102]	6e-28	F
CAHV_CD_02_171_G09	338	NO HIT		NO HIT		
CAHV_CD_02_171_H09	154	NO HIT		NO HIT		
CAHV_CD_02_172_A06	560	NO HIT	emb CBI28010.3	unnamed protein product [Vitis vinifera]	4e-21	Р

CAHV_CD_02_172_B06	486	NO HIT	ref XP_001874079.1	predicted protein [Laccaria bicolor S238N-H82]	7e-21	F
CAHV_CD_02_172_E05	345	NO HIT		NO HIT		
CAHV_CD_02_172_E11	555	NO HIT	sp Q9LEH3.1 PER15_IPOBA	Peroxidase 15; Flags: Precursor peroxidase [Ipomoea batatas]	1e-75	Р
CAHV_CD_02_172_F09	544	NO HIT		NO HIT		
CAHV_CD_02_173_A02	407	NO HIT		NO HIT		
CAHV_CD_02_173_B01	596	NO HIT		NO HIT		
CAHV_CD_02_173_B03	569	NO HIT	ref XP_003028134.1	hypothetical protein [Schizophyllum commune H4-8]	2e-26	F
CAHV_CD_02_173_B06	437	NO HIT	ref XP_570243.1	hypothetical protein [Cryptococcus neoformans var. neoformans]	3e-15	F
CAHV_CD_02_173_B08	171	NO HIT		NO HIT		
CAHV_CD_02_173_B12	391	NO HIT	ref XP_001837805.1	hypothetical protein [Coprinopsis cinerea okayama]	7e-16	F
CAHV_CD_02_173_C02	524	NO HIT		NO HIT		
CAHV_CD_02_173_C08	535	NO HIT	tpe CBF78322.1	TPA: cytochrome P450, putative (Eurofung) [Aspergillus nidulans]	5e-40	F
CAHV_CD_02_173_D09	529	NO HIT		NO HIT		
CAHV_CD_02_173_D10	533	NO HIT	ref XP_451683.1	hypothetical protein [Kluyveromyces lactis NRRL Y-1140]	1e-70	F
CAHV_CD_02_173_F11	15	NO HIT		NO HIT		
CAHV_CD_02_173_F12	19	NO HIT		NO HIT		
CAHV_CD_02_173_G06	33	NO HIT		NO HIT		
CAHV_CD_02_173_H06	557	NO HIT		NO HIT		
CAHV_CD_02_173_H08	588	NO HIT	gb ACU18016.1	unknown [Glycine max]	9e-08	Р
CAHV_CD_02_174_C03	306	NO HIT		NO HIT		
CAHV_CD_02_174_D12	526	NO HIT	ref XP_002262922.1	hypothetical protein [Vitis vinifera]	2e-44	Р
CAHV_CD_02_174_E05	381	NO HIT	ref XP_002285091.1	hypothetical protein [Vitis vinifera]emb CBI28176.3]	2e-24	Р
CAHV_CD_02_174_E10	214	NO HIT		NO HIT		
CAHV_CD_02_174_E12	515	NO HIT		NO HIT		
CAHV_CD_02_174_G12	519	NO HIT		NO HIT		
CAHV_CD_02_174_H01	335	NO HIT	ref XP_002395411.1	hypothetical protein [Moniliophthora perniciosa]	1e-16	F
CAHV_CD_02_175_A04	234	NO HIT		NO HIT		
CAHV_CD_02_175_A07	22	NO HIT		NO HIT		
CAHV_CD_02_175_D02	363	NO HIT		NO HIT		
CAHV_CD_02_175_E05	339	NO HIT		NO HIT		
CAHV_CD_02_175_E07	14	NO HIT		NO HIT		
CAHV_CD_02_175_F06	228	NO HIT		NO HIT		
CAHV_CD_02_175_F08	606	NO HIT	ref XP_002525789.1	conserved hypothetical protein [Ricinus communis]	4e-10	Р
CAHV_CD_02_175_G10	27	NO HIT		NO HIT		

1. Organismo - F: Fungo; P: Planta e OUT: outros.