DANÚBIA RODRIGUES ALVES

CARACTERIZAÇÃO DE UMA REGIÃO GENÔMICA DO HÍBRIDO DE TIMOR CIFC 832/2 ASSOCIADA À RESISTÊNCIA À *Hemileia vastatrix*

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Genética e Melhoramento, para obtenção do título de *Magister Scientiae*.

VIÇOSA MINAS GERAIS - BRASIL 2019

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

Т				
	Alves, Danúbia Rodrigues, 1992-			
A474c	Caracterização de uma região genômica do híbrido de timor			
2019	CIFC 832/2 associada à resistência à Hemileia vastatrix /			
	Danúbia Rodrigues Alves. – Viçosa, MG, 2019.			
	ix, 65 f. : il. (algumas color.) ; 29 cm.			
	Inclui apêndices			
Orientador: Eveline Teixeira Caixeta				
	Dissertação (mestrado) - Universidade Federal de Vicosa			
	Referências bibliográficas: f. 27-32			
	1. Bioinformática. 2. Ferrugem-do-cafeeiro.			
	3. Sequenciamento de nucleotídeo. I. Universidade Federal de			
	Viçosa. Departamento de Biologia Geral. Programa de			
	Pós-Graduação em Genética e Melhoramento. II. Título.			
CDD 22. ed. 570.285				

DANÚBIA RODRIGUES ALVES

CARACTERIZAÇÃO DE UMA REGIÃO GENÔMICA DO HÍBRIDO DE TIMOR CIFC 832/2 ASSOCIADA À RESISTÊNCIA À *Hemileia vastatrix*

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Genética e Melhoramento, para obtenção do título de *Magister Scientiae*.

APROVADA: 31 de julho de 2019.

Tugipo white O ~

Tiago Antônio de Oliveira Mendes (Coorientador)

Gilza Barcelos de Souza

TC. 14

Eveline Teixeira Caixeta (Orientadora)

A Deus, por guiar meus passos, Aos meus pais, Irene e Pedro, E ao Arthur, Por todo amor e dedicação, Dedico

AGRADECIMENTOS

A Deus, por iluminar o meu caminho.

Aos meus pais, Irene e Pedro, por todo amor e por acreditarem nos meus sonhos.

À minha família e aos amigos que mesmo de longe estiveram presentes no meu coração.

Ao Arthur pelo carinho, companheirismo, compreensão e incentivo. Com você ao meu lado o caminho se tornou mais fácil.

À Universidade Federal de Viçosa e ao Programa de Pós Graduação em Genética e Melhoramento, pela qualidade do ensino.

Ao Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), pela infraestrutura disponibilizada à realização do trabalho.

À minha orientadora, Dra. Eveline Teixeira Caixeta, pelos ensinamentos, confiança e incentivo.

À minha coorientadora Dra. Dênia Pires de Almeida pelos ensinamentos transmitidos, pela dedicação na realização desse trabalho e pela amizade.

Ao meu coorientador Prof. Tiago Antônio de Oliveira Mendes pelo apoio, pela disponibilidade e pelas contribuições para essa dissertação.

À Dra. Gilza Barcelos de Souza pelas contribuições para a melhoria dessa dissertação.

À Dra. Poliane Marcele Ribeiro Cardoso e ao Dr. Antonio Carlos Baião de Oliveira, pela disponibilidade de participação na banca.

Aos amigos que são a minha família em Viçosa, por dividirem comigo o medos e também os bons momentos. Em especial a minha companheira de mestrado, Ruane.

Aos amigos do Biocafé pelo apoio, pela amizade e por tornarem os meus dias mais agradáveis.

À Samila, ao Pedro e ao Edson pelas contribuições neste trabalho.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela concessão da bolsa de mestrado.

Aos secretários do PPGGM, Marco Túlio e Odilon, pela dedicação e boa vontade em nos ajudar.

A todos que de alguma forma contribuíram para a minha formação pessoal e profissional. Meus sinceros agradecimentos.

"A persistência é o menor caminho do êxito." Charles Chaplin

RESUMO

ALVES, Danúbia Rodrigues, M.Sc., Universidade Federal de Viçosa, julho de 2019. **Caracterização de uma região genômica do Híbrido de Timor CIFC 832/2 associada à resistência à** *Hemileia vastatrix***. Orientadora: Eveline Teixeira Caixeta. Coorientadores: Dênia Pires de Almeida e Tiago Antônio de Oliveira Mendes.**

A ferrugem do cafeeiro, causada pelo fungo biotrófico Hemileia vastatrix é a principal doença de importância econômica dessa cultura, sendo responsável por grandes prejuízos à cafeicultura mundial. Novas raças do patógeno têm surgido infectando cultivares de café comercializados como resistentes a essa doença. Desse modo, devido ao alto potencial adaptativo do fungo, a busca por cafeeiros resistentes a essa doença é uma atividade recorrente nos programas de melhoramento. Estudos com o Híbrido de Timor (HdT), tem sido realizados em pesquisas que visam resistência durável à ferrugem e outras doenças do cafeeiro. Compreender a natureza da resistência duradoura em genótipos do HdT e descrever os genes envolvidos na defesa das plantas é fundamental para o uso eficiente dos recursos disponíveis nesse híbrido natural. A utilização de ferramentas moleculares e de bioinformática tem mostrado resultados significativos para a ampliação do conhecimento dos genes envolvidos no patossistema Coffea - H. vastatrix. Desse modo, objetivou-se com esse estudo sequenciar e caracterizar, por meio de análises de bioinformática, uma região do genoma do Híbrido de Timor CIFC 832/2, que contém marcadores associados à resistência à H. vastatrix. Para isso foi realizado o sequenciamento do clone BAC 70-22F contendo a marca funcional de resistência, por meio da Plataforma Illumina MiSeq (paired – end reads). Posteriormente foi feita a montagem dos contigs e a predição dos genes. Realizou-se a anotação gênica com base nos genomas de Coffea arabica, Coffea canephora e Coffea eugenioides, utilizando a ferramenta BLAST. A anotação gênica revelou a presença de genes candidatos relacionados ao mecanismo de resistência de hospedeiros contra patógenos. Foram anotados 991 genes do clone BAC 70-22F. Desses genes, 340 foram anotados com similaridade com o genoma de C. arabica (var. Caturra), 337 com o genoma de C. eugenioides e 314 com o genoma de C. canephora (clone IF 200). Com base na anotação gênica foram selecionadas duas sequências de genes candidatos a receptores like kinases (RLK) e desenhados primers para estudo do perfil de expressão gênica durante a interação Coffea - H. vastatrix. Um possível gene de resistência, LRR receptor-like serine/threonine-protein kinase GSO2, foi descrito e apresentou um perfil

de expressão correspondente a uma resposta de resistência pré-haustorial. O outro possível receptor *like kinase* em estudo, apresentando um domínio *LRR*, exibiu uma diminuição na expressão gênica pré-haustorial em genótipos incompatíveis. As análises filogenéticas desses genes, bem como os estudos de identidade e similaridade genética da região genômica clonada, demonstraram uma relação mais próxima entre o clone BAC 70-22F e a espécie *C. arabica* e corroboram com a diversidade genética descrita para o HdT. Os resultados sugerem que a região genômica clonada do HdT CIFC 832/2 possui importantes genes candidatos a resistência do cafeeiro à *H. vastatrix* e apresentam informações relevantes para ampliar o conhecimento sobre o HdT, podendo contribuir para futuros planejamentos de estratégias de melhoramento do cafeeiro.

ABSTRACT

ALVES, Danúbia Rodrigues, M.Sc., Universidade Federal de Viçosa, July, 2019. Characterization of a genomic region of the Híbrido de Timor CIFC 832/2 associated with resistance to *Hemileia vastatrix*. Advisor: Eveline Teixeira Caixeta. Co-advisers: Dênia Pires de Almeida and Tiago Antônio de Oliveira Mendes.

Coffee leaf rust, caused by the biotrophic fungus *Hemileia vastatrix* is the main disease of economic importance of this crop, being responsible for major damages to world coffee. New races of the pathogen have emerged infecting coffee cultivars marketed as resistant to this disease. Thus, due to the high adaptive potential of the fungus, the search for coffee resistant to this disease is a recurrent activity in breeding programs. Studies with the Híbrido de Timor (HdT) have been conducted in research aimed at durable resistance to rust and other coffee diseases. Understanding the nature of enduring resistance in HdT genotypes and describing the genes involved in plant defense is critical to the efficient use of the resources available in this natural hybrid. The use of molecular and bioinformatics tools has shown significant results to increase the knowledge of the genes involved in the Coffea - H. vastatrix pathosystem. Thus, the aim of this study was to sequencing and characterize, through bioinformatics analysis, a region of the Híbrido de Timor CIFC 832/2 genome, which contains markers associated with resistance to H. vastatrix. For this, the sequencing of clone BAC 70-22F containing the functional resistance mark was performed by means of the Illumina MiSeq Platform (paired - end reads). Subsequently, the contigs were assembled and the genes predicted. Genic annotation was performed based on the genomes of Coffea arabica, Coffea canephora and Coffea eugenioides, using the BLAST tool. The gene annotation revealed the presence of candidate genes related to the mechanism of host resistance against pathogens. 991 genes of clone BAC 70-22F were noted. Of these genes, 340 were noted similarly with the C. arabica genome (var. Caturra), 337 with the C. eugenioides genome and 314 with the C. canephora genome (clone IF 200). Based on the gene annotation, two sequences of candidate genes receptor like kinases (RLK) were selected and primers designed to study the gene expression profile during the Coffea - H. vastatrix interaction. A possible resistance gene, receptor-like serine / threonine protein kinase GSR2 LRR, has been described and has an expression profile corresponding to a pre-haustorial resistance response. The other possible receptor like kinase under study, presenting an LRR domain, exhibited a decrease in pre-haustorial

gene expression in incompatible genotypes. Phylogenetic analyzes of these genes, as well as genetic identity and similarity studies of the cloned genomic region, demonstrated a closer relationship between clone BAC 70-22F and *C. arabica* and corroborated the genetic diversity described for HdT. The results suggest that the cloned genomic region of HdT CIFC 832/2 has important candidate genes for resistance to H. vastatrix coffee and presents relevant information to increase knowledge about HdT and may contribute to future planning of coffee breeding strategies.

SUMÁRIO

1. Introdução 1
2. Material e Métodos
2.1. Rastreio e sequenciamento do clone BAC 5
2.2. Análises de bioinformática
2.2.1. Montagem de <i>contigs</i>
2.2.2. Predição gênica
2.2.3. Anotação de genes
2.3. Análise de expressão gênica
2.4. Estudos filogenéticos
3. Resultados
3.1. Rastreio e sequenciamento do clone BAC 10
3.2. Análises de bioinformática
3.3. Análise de expressão gênica
3.4. Estudos filogenéticos
4. Discussão20
5. Conclusões
Referências Bibliográficas
Apêndices

1. Introdução

As perdas na produção cafeeira é um dos problemas de destaque enfrentado pelos cafeicultores devido à suscetibilidade do café a diferentes doenças (CARVALHO *et al.*, 2012). A principal doença de importância econômica dessa cultura é a ferrugem, causada pelo fungo biotrófico *Hemileia vastatrix*, que ocasiona grandes prejuízos à cafeicultura mundial (AVELINO *et al.*, 2015; ZAMBOLIM, 2016). A maioria das variedades comerciais de *Coffea arabica*, espécie de grande valor econômico, é suscetível a essa doença (ZAMBOLIM, 2016; TALHINHAS *et al.*, 2017). A ferrugem do cafeeiro foi constatada pela primeira vez no Brasil no ano de 1970, na região sul do estado da Bahia. Quatro meses após a primeira observação da doença no país, a ferrugem foi encontrada em diferentes regiões produtoras de café. Hoje, a *H. vastatrix* está amplamente distribuída nas áreas cafeeiras em todo o mundo e novas raças do patógeno, capazes de suplantar a resistência, têm surgido. (CABRAL *et al.*, 2009; TALHINHAS *et al.*, 2017).

O sucesso da infecção do cafeeiro por esse patógeno depende da sua habilidade em suprimir as respostas da planta (JONES e DANGL, 2006). No processo de coevolução de plantas e patógenos, as plantas desenvolveram a capacidade de reconhecer padrões moleculares e efetores do patógeno, ativando uma resposta de defesa elaborada. De forma similar, os patógenos desenvolveram estratégias contra os mecanismos de defesa das plantas, havendo uma complexa dinâmica de evolução na interação planta-patógeno (JONES e DANGL, 2006; FRANTZESKAKIS *et al.*, 2019).

As ferrugens formam uma estrutura especializada, haustórios, no mesófilo das células dos seus hospedeiros durante o processo de infecção. Essa estrutura desempenha um papel importante na infecção, sendo responsável pela absorção de nutrientes a partir do hospedeiro. Além disso, induz mudanças estruturais na célula hospedeira, como o rearranjo do citoesqueleto, a migração do núcleo e a condensação da cromatina (MENDGEN e HAHN, 2002). Acredita-se que essas modificações são induzidas pela atuação de proteínas efetoras produzidas nos haustórios, que são secretadas na matriz extra-haustorial e translocadas para o interior da célula vegetal. A resposta de resistência às ferrugens normalmente é observada após a formação dos haustórios indicando que os genes Avr (Avr – avirulência) do patógeno são expressos nessa estrutura (DODDS *et al.*, 2009).

O sistema de defesa da planta pode ser representado por um sistema imune inato, constituído por duas linhas de defesa. Na primeira linha de defesa, há o reconhecimento do patógeno por padrões moleculares associados à patógenos (PAMPs – *Pathogen Associated Molecular Patterns*) ou por padrões moleculares associados à microrganismos (MAMPs – *Microbe Associated Molecular Patterns*) resultando a imunidade desencadeada por PAMPs/MAMPs (PTI - *Pathogen Triggered Immunity*) (JONES e DANGL, 2006). Os PAMPs/MAMPs são identificados por receptores de reconhecimento padrão (PRR - *Pattern Recognition Receptor*) localizados na superfície da membrana celular ou no interior da célula. Eles levam à formação de uma cascata de transdução de sinais ativando a resposta de defesa do hospedeiro. Geralmente os PRRs são proteínas transmembranas pertencentes à classe das proteínas semelhantes a receptores (RLPs) ou receptores do tipo quinases (RLKs) e apresentam repetições ricas em leucina (LRRs) ou motivo de lisina (LysM) no domínio extracelular, região responsável pelo reconhecimento de PAMPs (JONES e DANGL, 2006; BECK *et al.*, 2012).

Patógenos bem adaptados muitas vezes são capazes de suplantar a PTI por meio do transporte de proteínas efetoras para o citoplasma do hospedeiro. Dessa forma, uma segunda linha de defesa é ativada, a imunidade desencadeada por efetores (ETI - *Effector Triggered Immunity*). Essa é uma linha de defesa mais específica e eficaz para alguma(s) raça(s) do patógeno (JONES e DANGL, 2006). Na ETI, as plantas apresentam proteínas de resistência (R) que reconhecem os efetores do patógeno (Avr) resultando em resistência. O reconhecimento de efetores pelas proteínas R pode ser direto (modelo gene-a-gene) ou indireto (modelo guarda). No modelo gene-a-gene, o reconhecimento se dá de forma direta entre as proteínas R e Avr. Por sua vez, no modelo guarda o reconhecimento pelas proteínas R é realizado por meio do monitoramento de uma proteína acessória da planta hospedeira, alvo dos efetores do patógeno (SEKHWAL *et al.*, 2015; REDDY e NARESH, 2018).

A maioria dos genes R codificam proteínas que contêm um domínio C-terminal rico em repetições de leucina (LRR) e um domínio conservado contendo sítios de ligação a nucleotídeos (NBS), pertencendo à classe de genes de resistência NBS-LRR. O domínio LRR pode interagir com a proteína Avr ou com um complexo de proteínas formado pela Avr e outras proteínas do hospedeiro. O domínio NBS atua como sinalizadores celulares e provavelmente iniciam a resposta de resistência em plantas (RIBAS *et al.*, 2011; REDDY e NARESH, 2018). Os genes R de diferentes espécies de plantas compartilham domínios conservados e podem ser usados para triagem de genomas de plantas para putativos genes de resistência (REDDY e NARESH, 2018). Análogos de genes de resistência (*RGAs*) conservam domínios e motivos proteicos que desempenham papéis específicos na defesa da planta contra patógenos (SEKHWAL *et al.*, 2015).

A resistência das plantas de cafeeiro na interação com o fungo *H. vastatrix* é condicionada por no mínimo nove genes dominantes de efeito maior (NORONHA e BETTENCOURT, 1967; BETTENCOURT *et al.*, 1988) e se baseia no modelo gene-agene, proposto por Flor (1971). De acordo com esse modelo, ocorre o reconhecimento dos genes Avr das diferentes raças de *H. vastatrix*, por parte dos fatores de resistência do cafeeiro. Seguindo o modelo gene-a-gene, foi inferida a existência de nove genes de virulência (v1-v9) em *H. vastatrix* (NORONHA e BETTENCOURT, 1967; BETTENCOURT *et al.*, 1988). Atualmente, o número de perfis de virulência da ferrugem do cafeeiro provavelmente vai muito além das raças caracterizadas (v5,7 ou v5,7,9) capazes de suplantar a resistência de algumas cultivares que foram inicialmente caracterizadas como resistentes ao fungo causador da ferrugem (CAPUCHO *et al.*, 2012). Dessa forma, a obtenção de cultivares com resistência durável tem sido um desafio para os melhoristas.

Estudos com o Híbrido de Timor (HdT), um híbrido interespecífico natural entre *Coffea arabica* e *Coffea canephora* (BETTENCOURT, 1973), tem sido de grande importância para os progressos alcançados em pesquisas visando a resistência do cafeeiro à *H. vastatrix*. O HdT e as progênies derivadas do seu cruzamento com outros cultivares vêm sendo estudados em diversas regiões produtoras de café no mundo (TALHINHAS *et al.*, 2017; SOUSA *et al.*, 2017; SILVA *et al.*, 2018). Esse germoplasma tem sido utilizado em programas de melhoramento que visam resistência durável à ferrugem e outras doenças do cafeeiro (SILVA *et al.*, 2018). Entretanto, o HdT ainda contém genes que não foram caracterizados (CAPUCHO *et al.*, 2009; DIOLA *et al.*, 2011; PESTANA *et al.*, 2015). Entre os derivados do HdT, CIFC (Centro de Investigação das Ferrugens do Cafeeiro, Portugal) 832/1 e CIFC 832/2 são de suma importância, pois unem a resistência à patógenos e boas características agronômicas. A resistência do HdT CIFC 832/2 pode ser mais durável do que em outros genótipos de HdT e contém ainda respostas mais rápidas de resistência à ferrugem (BETTENCOURT, 1973; DINIZ *et al.*, 2012).

Compreender melhor a diversidade genética e a natureza da resistência duradoura em genótipos do HdT é fundamental para o uso eficiente dos recursos disponíveis nesse híbrido natural (SETOTAW *et al.*, 2010; TALHINHAS *et al.*, 2017). O estudo do perfil de expressão gênica durante a interação *Coffea - H. vastatrix* pode facilitar a identificação dos genes envolvidos na resistência e auxiliar na compreensão dos mecanismos de defesa da planta (BARKA *et al.*, 2017; FLOREZ *et al.*, 2017). Estudos com o objetivo de entender a diversidade genética do HdT também contribuem para o planejamento de estratégias de melhoramento (SETOTAW *et al.*, 2010).

A expansão das pesquisas genômicas, possibilitada pelo desenvolvimento de novas tecnologias, tem aumentado em larga escala a quantidade de informações biológicas disponíveis (ETIENNE *et al.*, 2002; MICHNO e STUPAR, 2018). Os avanços da biotecnologia em conjunto com os estudos de bioinformática, aplicados ao melhoramento, têm auxiliado na compreensão e manipulação gênica (EDWARDS e BATLEY, 2004; MICHNO e STUPAR, 2018). Essas ferramentas possibilitam a ampliação do conhecimento dos genes que estão envolvidos na resistência de *Coffea* à *H. vastatrix*, podendo levar a identificação e até mesmo a clonagem de genes essenciais para a resistência do cafeeiro (ETIENNE *et al.*, 2002; FERNANDES-BRUM *et al.*, 2017).

Utilizando essas ferramentas, o estudo do transcriptoma da interação *Coffea - H. vastatrix*, permitiu identificar genes candidatos, relacionados ao mecanismo de defesa do cafeeiro e caracterizar a expressão desses genes em interação compatível e incompatível (Florez *et al.*, 2017). Sendo relatados genes RLKs envolvidos na primeira resposta de defesa da planta. Essa resposta precoce é fundamental para introduzir cascatas de sinalização na PTI e posterior a expressão de genes envolvidos em mecanismos de defesa (KUMAR e KIRTI, 2011). Acredita-se que a resistência préhaustorial, antes das 24 horas após a inoculação na interação cafeeiro – *H. vastatrix*, seja mais durável por envolver vários mecanismos de defesa do hospedeiro, consolidando a proteção da planta (HEATH, 2000; LOPES, 2015). O perfil de expressão do gene *putative probable receptor-like protein kinase At5g39020*, previamente identificado por Florez *et al.* (2017), mostrou uma resposta pré-haustorial no genótipo resistente e uma expressão mais tardia no genótipo suscetível. Os autores concluíram que esse gene provavelmente está relacionado ao reconhecimento do patógeno na primeira linha de defesa da planta. Assim, esse marcador apresenta características significativas para o estudo da resistência de plantas no patossistema *Coffea - H. vastatrix.*

Desse modo, objetivou-se sequenciar e caracterizar uma região do genoma da principal fonte de resistência do cafeeiro à *Hemileia vastatrix*, o Híbrido de Timor CIFC 832/2, utilizando o marcador *putative probable receptor-like protein kinase At5g39020*. A identificação de genes nessa região será empregada para ampliar o conhecimento da resistência do cafeeiro a essa importante doença.

2. Material e Métodos

2.1. Rastreio e sequenciamento do clone BAC

Foi feito o rastreio de uma biblioteca de clones BAC (*Bacterial Artificial Chromosome*), mantida no Laboratório de Biotecnologia do Cafeeiro (Universidade Federal de Viçosa – MG), com o marcador *putative probable receptor-like protein kinase At5g3920*. Esta biblioteca foi construída a partir do cafeeiro HdT CIFC 832/2 (CAÇÃO *et al.*, 2013), genótipo portador de fatores genéticos que condicionam resistência a diferentes patógenos e boas características agronômicas (BETTENCOURT, 1973). A biblioteca contém 56.832 clones BAC em 148 placas de titulação de 384 poços. (CAÇÃO *et al.*, 2013).

Os clones foram replicados em placas de titulação de 384 poços contendo 70µl de meio LB fresco (com 12,5µgml⁻¹ Cloranfenicol), usando um replicador de placas esterilizado, sob capela de fluxo de ar laminar. A multiplicação da cultura foi feita por meio da incubação das placas em agitador com temperatura de 37°C durante 18h e velocidade de 180rpm. Após a incubação, com a finalidade de identificar os clones com a marca, foi utilizada a metodologia de decomposição do agrupamento das BAC. A placa foi dividida em duas parte e coletado o *pool* de cada parte. Posteriormente a meia placa da biblioteca contendo o marcador foi decomposta em quatro grupos de 48 clones, seguida da análise das colunas verticais até chegar a um único clone BAC (DIOLA, 2009). O DNA plasmidial do clone foi extraído com o *kit Wizard*® *Plus SV Minipreps DNA purification System* (Promega), seguindo as recomendações do fabricante. A quantificação foi realizada com o auxílio do Qubit dsDNA BR (*Life Technologies*) e espectrofotômetro NanoDropTM (*Thermo Fisher Scientific*). A PCR foi otimizada contendo 50ng DNA plasmidial, 0,1µM de cada primer, 0,15mM de dNTP (Promega),

1,0mM MgCl₂, 1,0U de Taq *DNA polymerase* (Invitrogen), e 1X PCR reação buffer, com volume final de 20μL. O DNA foi amplificado em termociclador (PTC - 200 - MJ *Research and Veriti - Applied Biosystems*), programado com desnaturação inicial a 94°C por 10min, seguida por 35 ciclos desnaturação a 94°C por 30s, anelamento a 61°C por 30s e extensão a 72°C por 1min. Finalizando com uma extensão final de 72°C por 10min. O produto foi visualizado em gel de agarose (1,5%).

O clone identificado foi sequenciado por meio da plataforma Illumina MiSeq (*paired-end reads*). Para isso, 50ng de DNA plasmidial foi submetido a uma reação de fragmentação aleatória na qual o DNA foi fragmentado e ligado a adaptadores específicos utilizando o *kit Nextera*® *XT DNA Sample Preparation* (Illumina), conforme instrução do fabricante. Em seguida, o DNA purificado foi amplificado utilizando iniciadores complementares aos adaptadores. Os produtos foram quantificados por meio do espectrofotômetro Qubit DNA BR (*Life Technologies*). As bibliotecas foram diluídas em uma solução de Tris-HCl e Tween 0,1%, depositadas em uma *flowchip* e submetidas a 500 ciclos (2x250bp) de sequenciamento utilizando *MiSeq Reagent Kit v2* (Illumina).

2.2. Análises de bioinformática

2.2.1. Montagem de contigs

Após o sequenciamento, as *reads* geradas foram submetidas a análises de bioinformática para a edição, montagem e anotação dos *contigs*, com o intuito de interpretar o contexto biológico. Realizou-se uma avaliação de qualidade das *reads* sequenciadas utilizando o *software* FastQC (versão 0.11.5) (ANDREWS, 2010). Em seguida, foram removidas as sequências contaminantes e as de baixa qualidade por meio do *software Trimmomatic* (versão 0.36) (LOHSE *et al.*, 2012). Com base nas sequências selecionadas, realizou-se a montagem dos *contigs* e *scaffolds* usando o *software* SPAdes (BANKEVICH *et al.*, 2012), empregando a estratégia de montagem *de novo*. Efetuou-se uma avaliação de qualidade da montagem dos *scaffolds* utilizando a ferramenta de avaliação de montagem de genoma QUAST (versão 5.0.2) (MIKHEENKO *et al.*, 2018).

2.2.2. Predição gênica

Utilizando o *software* AUGUSTUS (http://augustus.gobics.de/), os genes foram preditos a partir dos *contigs* para a obtenção do número de exons, íntrons e transcritos (STANKE *et al.*, 2004). A predição gênica foi realizada com base no reconhecimento de regiões previamente caracterizadas de *Solanum lycopersicum*. Essa espécie foi usada como referência por ser geneticamente próxima ao gênero *Coffea* e assim, compartilharem repertórios de genes comuns (LIN *et al.*, 2005).

2.2.3. Anotação de genes

A anotação dos genes foi efetuada utilizando a ferramenta para busca de similaridade de sequência, BLASTp (*Basic Local Alignment Search Tool*) com *e-value* de 10⁻⁵. Foi utilizada uma estratégia baseada em similaridade para identificar sequências relacionadas com funções já conhecidas em genoma de *C. arabica* (var. Caturra), *C. eugenioides* (NCBI - https://www.ncbi.nlm.nih.gov/) e *C. canephora* (clone IF 200) (COFFEE GENOME HUB - http://coffee-genome.org/). As sequências foram anotados a partir do melhor alinhamento (*best hit*) com cada genoma.

2.3. Análise de expressão gênica

Com base na anotação gênica foram selecionadas duas sequências de genes candidatos a receptores like kinase (RLK). Para as duas sequências escolhidas foram desenhados primers utilizando o servidor GenScript (https://www.genscript.com/) e o programa Oligo Explorer (versão 1.5) (KUULASMAA, 2010). Foi desenhado um conjunto de *primers* para cada sequência de genes candidatos a *RLK*. Foram desenhados primers para o gene anotado como LRR receptor-like serine/threonine-protein kinase 5'-TGGCGGATCAAGTGCATCT-3'; 60,3°C - R: (Gene1: F: 5'-GSO2 TCGTCTCCTTGAAACTCTTGC-3'; 58,3°C; 154pb). Também foram desenhados primers para o gene anotado como putative receptor-like protein kinase At3g47110 (Gene2: F: 5'-GCCTTGGATTTGGCGATAA-3'; 56.8°C R: 5'-CTGAGGAAGCATGAGACC-3', 57,1°C; 143pb). Os primers desenhados foram utilizados nas reações de PCR quantitativo em tempo real (RT-qPCR).

O experimento para a análise de expressão gênica foi conduzido em um delineamento experimental inteiramente casualizado, com três repetições biológicas.

Utilizaram-se plantas jovens C. arabica var. Caturra CIFC 19/1 (interação compatível) e Híbrido de Timor CIFC 832/1 (interação incompatível), as quais foram inoculadas com a raça XXXIII de H. vastatrix. A inoculação foi realizada como proposto por Capucho et al. (2009). Esses cafeeiros usados na análise de expressão gênica correspondem aos parentais da cultivar Oeiras MG 6851, que teve sua resistência suplantada pela raça XXXIII do patógeno. As amostras foram coletadas em 0, 12, 24 e 72 hai. Para a extração do RNA, as folhas inoculadas foram coletadas e maceradas em N2 líquido. O RNA total foi extraído com 100mg de tecido macerado e Rneasy Plant Mini Kit (Qiagen), seguindo as recomendações do fabricante. A quantificação foi realizada com o uso do espectrofotômetro Qubit RNA BR (Life Technologies) e NanoDropTM (Thermo Fisher Scientific). A integridade do RNA foi avaliada por eletroforese em gel de agarose (1,5%) corado com brometo de etídio. As amostras foram armazenadas em ultracongelamento a -80°C, até o uso. O cDNA foi sintetizado com 3µg de RNA total, pré-tratado com 1µl de DNAse por 15min (50U/µL, DNAseI de Inversão, InvitrogenTM) para remover possíveis contaminantes do DNA genômico. A primeira cadeia de cDNA foi sintetizada utilizando o kit de RT-PCR do Protocolo de Transcrição Reversa ImProm-II [™] (Promega), de acordo com as orientações do fabricante e armazenada a -20°C até a utilização.

Para a realização da técnica de PCR quantitativo em tempo real, em aparelho 7500 Real Time PCR Systems (*Applied Biosystems*), foi utilizado o sistema de detecção de fluorescência SYBR Green I (*Applied Biosystems*, California, USA). Para cada reação utilizou-se 2µl da diluição da reação de síntese de cDNA de fita simples, 1µl de *primers forward* e *reverse*, 5µl de SYBR® Green PCR Master Mix (*Applied Biosystems*), 0,2µl de Dyer e 1µl de água estéril. Para um volume final de 10µl com 50ng/µl de cDNA e 100nM de *primers*. As condições da reação foram: 95°C por 10min para a desnaturação inicial, seguido por 40 ciclos de 95°C por 15s e 60°C por 1min. O nível de expressão dos genes foi calculado utilizando os valores médios de Ct, resultante de três réplicas biológicas e três réplicas técnicas.

Para a normalização dos dados foram utilizados dois genes constitutivos selecionados (Ubiquitina10 e Gliceraldeído-3-fosfato desidrogenase) cujas expressões foram encontradas estáveis (CRUZ *et al.*, 2009). As análises estatísticas foram realizadas utilizando o *software Prism* 5 (versão 5.01) (MOTULSKY, 2007). Todos os dados são apresentados como média. A diferença no nível de expressão entre interações em uma mesma hora de mensuração foi calculada utilizando o teste o Teste de Tukey (p

< 0,05). A diferença no nível de expressão entre amostras não inoculadas e amostras inoculadas foi calculada utilizando ANOVA seguida pelo Teste de Tukey (p < 0,05).

2.4. Estudos filogenéticos

Foram efetuados estudos da relação genética do clone BAC selecionado (70-22F), utilizando *software* TopHat (versão 2.1.1) (TRAPNELL *et al.*, 2009), em comparação com quatro genomas de *Coffea*: *C. arabica*1 var. Caturra (NCBI - https://www.ncbi.nlm.nih.gov/); *C. arabica*2, var. Típica (dados não publicados); *C. arabica*3, var. Bourbon (WCR - https://worldcoffeeresearch.org/) e *Coffea canephora* clone IF 200 (COFFEE GENOME HUB - http://coffee-genome.org/). No *software* realizou-se uma busca de identidade genética entre as *reads* geradas pelo sequenciamento do clone BAC 70-22F e as variedades de *Coffea* em estudo. Também foi realizada uma busca de similaridade de sequências (BLASTp com *e-value* de 10⁻⁵) entre o clone e os quatro genomas. A porcentagem de BLAST foi calculada a partir dos dois melhores alinhamentos, de cada genoma com cada sequência de *contigs*.

Além disso, também realizaram-se análises filogenéticas baseadas em alinhamentos de cinco sequências gênicas conservadas e de cópia única do clone BAC 70-22F e dos quatro genomas de *Coffea*. As análises foram realizadas utilizando o software MEGA-X-10.0.5 (KUMAR *et al.*, 2018). As cinco sequências gênicas conservadas, *3-oxoacyl*[acyl-carrier-protein] reductase 4, UDP-glucose 6-dehydrogenase 5-like, succinate-semialdehyde dehydrogenase%2C mitochondrial-like, asparagine synthetase [glutamine-hydrolyzing] e Enolase, foram escolhidas com base na anotação gênica. A história evolutiva das sequências proteicas foi inferida utilizando o método Maximum Likelihood, baseado no modelo de Tamura-Nei com bootstrap de 1.000 réplicas (FELSENSTEIN, 1985; TAMURA e NEI, 1993).

Análises filogenéticas foram realizadas para os dois possíveis genes de resistência selecionados, *LRR receptor-like serine/threonine-protein kinase GSO2* (Gene1) e *putative receptor-like protein kinase At3g47110* (Gene2), utilizando o *software* MEGA-X-10.0.5 (KUMAR *et al.*, 2018). O estudo filogenético foi efetuado com base nos melhores alinhamentos (BLASTp com *e-value* de ¹⁰⁻⁵) de sequências proteicas, dos dois genes com os quatro genomas de *Coffea: C. arabica*1 var. Caturra; *C. arabica*2, var. Típica; *C. arabica*3, var. Bourbon e *Coffea canephora* clone IF 200. A história evolutiva das sequências proteicas foi inferida utilizando o método *Maximum*

Likelihood, baseado no modelo de Tamura-Nei com *bootstrap* de 1.000 réplicas (FELSENSTEIN, 1985; TAMURA e NEI, 1993). Posteriormente, foram caracterizados os domínios das sequências proteicas do Gene1, do Gene2 e das sequências de *Coffea* que ficaram mais próximas na árvore filogenética desses dois genes de interesse. Essa análise foi executada no banco de dados de famílias proteicas Pfam (https://pfam.xfam.org/search/sequence) (FINN *et al.*, 2013).

3. Resultados

3.1. Rastreio e sequenciamento do clone BAC

Para caracterização de uma região genômica com potencial associação à resistência do cafeeiro, o marcador molecular capaz de amplificar o gene *putative probable receptor-like protein kinase At5g39020* foi utilizado para analisar uma biblioteca de clones BAC do cafeeiro HdT CIFC 832/2 (CAÇÃO *et al.*, 2013). Após o rastreio com o marcador, identificou-se o clone BAC 70-22F contendo a marca funcional desse gene (Figura 1). O fragmento de DNA do clone BAC 70-22F foi extraído e posteriormente sequenciado. Foram obtidas 122.273 *reads* de alta qualidade com o sequenciamento do clone BAC 70-22F.

Figura 1. Produto de amplificação da biblioteca BAC (HdT CIFC 832/2). a) Marcador de peso molecular 100pb. b) Clone BAC 70-22F contendo a marca funcional do

putative probable receptor-like protein kinase At5g39020. **c**) Clone BAC 70-23F não apresentando a marca funcional do *putative probable receptor-like protein kinase* At5g39020.

3.2. Análises de bioinformática

Utilizando estratégias de bioinformática, foi realizada a montagem da sequência de DNA a partir das *reads* de qualidade obtidas com o sequenciamento do clone BAC 70-22F. A montagem resultou em 3.355 *scaffolds*. A região genômica montada apresentou um valor de N50 de 1.080 pb e L50 de 605 pb, a percentagem de CG foi de 43,43 (Tabela 1).

Características do genoma	Valores
Reads de alta qualidade	122.273
Número total de bases	230.817 pb
Número de scaffolds	3.355
Maior scaffold	6.472 pb
N50	1.080 pb
L50	605 pb
Número total de bases (* ≥ 0 pb)	1.080.585 pb
Número total de bases (* \ge 1.000 pb)	1.17.713 pb
Número total de bases (* \geq 5.000 pb)	24.466 pb
Número total de bases (* \ge 10.000 pb)	0
Número total de bases (* $\ge 25.000 \text{ pb}$)	0
Número total de bases (* \geq 50.000 pb)	0
GC (%)	43,43

Tabela 1. Parâmetros estatísticos da montagem do clone BAC 70-22F.

*: *scaffolds*; pb: pares de bases.

Empregando a ferramenta para busca de similaridade de sequências (BLAST), foram anotados 991 genes a partir os genes preditos do clone BAC 70-22F. Desses genes, 340 foram anotados com similaridade com o base no genoma de *C. arabica* (var. Caturra), 337 com o genoma de *C. eugenioides* e 314 com o genoma de *C. canephora* (clone IF 200) (Apêndice A). Em relação aos genes anotados a partir do genoma de *C.*

arabica, 173 foram encontrados no subgenoma *C. eugenioides* (C^E), 152 no subgenoma *C. canephora* (C^C) e 15 com sequências não caracterizadas em cromossomos.

A anotação gênica revelou a presença de genes candidatos relacionados ao mecanismo de resistência de hospedeiros contra patógenos. Foram identificados genes como um análogo ao *putative late blight resistance protein homolog R1A-4, cysteine synthase*, entre outros possíveis genes envolvidos no mecanismo de defesa de plantas (Apêndice A).

3.3. Análise de expressão gênica

Foram selecionados dois genes análogos de resistência (*RGAs*), identificados na região genômica do HdT CIFC 832/2 (BAC 70-22F), para a análise de expressão. Os genes escolhidos, *LRR receptor-likeserine/threonine-protein kinase GSO2* (Gene1) e *putative receptor-like protein kinase At3g47110* (Gene2), são candidatos a receptores *like kinase (RLK)*.

As análises de expressão gênica mostraram resultados significativos para os dois genes selecionados do clone BAC 70-22F. Na análise da expressão do Gene1 foram observadas diferenças significativas entre interação incompatível e compatível às 12 e 24 hai (Figura 2). Na interação compatível não houve diferença de expressão quando comparados os diferentes tempos após infecção. Na interação incompatível, observou-se um aumento de expressão do gene às 12 hai, momento em que também houve diferença significativa entre as interações incompatível e compatível (Figura 2).

Figura 2. Análise de expressão por PCR em tempo real do Gene1. O padrão de expressão foi mensurado em 0 hora, amostras não inoculadas, 12, 24 e 72 horas após a

inoculação de urediniósporos frescos (*H. vastatrix* – raça XXXIII) em plantas incompatíveis (HdT CIFC 832/1) e compatíveis (*C. arabica* var. Caturra CIFC 19/1). (*) Diferença significativa no nível de expressão entre interações na mesma hai. (*) Diferença significativa em relação às amostras não inoculadas (0h) na mesma interação.

A expressão do gene Gene2 analisado entre interações incompatível e compatível e mensurados em horários iguais de infecção, revelou diferença significativa às 0 e 72 hai. Em ambos os horários, a interação incompatível apresentou maior expressão do gene (Figura 3). Na interação incompatível houve uma diminuição da expressão relativa do Gene2 em relação ao mesmo genótipo avaliado às 0h. A interação compatível revelou um aumentou significativo de expressão do Gene2 às 24 hai (Figura 3).

Figura 3. Análise de expressão por PCR em tempo real do Gene2. O padrão de expressão foi mensurado em 0 hora, amostras não inoculadas, 12, 24 e 72 horas após a inoculação de urediniósporos frescos (*H. vastatrix* – raça XXXIII) em plantas incompatíveis (HdT CIFC 832/1) e compatíveis (*C. arabica* var. Caturra CIFC 19/1). (*) Diferença significativa no nível de expressão entre interações na mesma hai. (*) Diferença significativa em relação às amostras não inoculadas (0h) na mesma interação.

3.4. Estudos filogenéticos

Análises filogenéticas foram realizadas para ampliar o conhecimento do clone BAC 70-22F. As *reads* obtidas no sequenciamento da BAC e os quatro genomas de *Coffea* foram submetidas a uma busca por identidade genética. Observou- se que as sequências do clone BAC 70-22F possuem maior grau de identidade genética com o genoma de *C. arabica* var. Caturra (14,6%), seguida de *C. arabica* var. Típica (11,8%). A identidade genética com o genoma *C. arabica* var. Bourbon foi de 4,0 %. A menor identidade genética mensurada foi obtida em comparação com o genoma de *C. canephora* (0,2%) (Figura 4).

Figura 4. Identidade genética entre as *reads* geradas pelo sequenciamento do clone BAC 70-22F e as variedades Caturra (*C. arabica*1), Típica (*C. arabica*2), Bourbon (*C. arabica*3) e clone IF 200 (*C. canephora*).

Uma busca por similaridade de sequências também foi realizada entre os *scaffolds* montados da BAC 70-22F e os quatro genomas de *Coffea*. Resultado semelhante ao encontrado com as *reads* foi observado. Nessa análise, maior similaridade foi observada para *C. arabica* var. Caturra (62,56%), seguida de *C. arabica* var. Típica (37,15%), *C. arabica* var. Bourbon (0,27%) e *C. canephora* (0,02%) (Figura 5).

Alinhamento entre genomas

Figura 5. Similaridade de sequências entre o clone BAC 70-22, montado em *contigs*, e as variedades Caturra (*C. arabica*1), Típica (*C. arabica*2), Bourbon (*C. arabica*3) e clone IF 200 *C. canephora*. A porcentagem de BLAST foi calculada a partir dos dois melhores alinhamentos de cada genoma com cada sequência de *contigs*.

Na caracterização do clone BAC 70-22F foram ainda analisados alguns genes conservados, cópia única, encontrados na anotação gênica. Com base na análise filogenética das sequências gênicas conservadas e dos quatro genomas de *Coffea*, o clone alinhou em diferentes grupos de acordo com o gene analisado (Figura 6).

Figura 6. Árvores filogenéticas baseadas em alinhamento dos genomas *C. arabica*1 var. Caturra, *C. arabica*2 var. Típica, *C. arabica*3 var. Bourbon, *C. canephora* clone IF 200 e de sequências gênicas conservadas do clone BAC 70-22. a) 3-oxoacyl-[acyl-carrier-protein] reductase 4 (Gene1). b) UDP-glucose 6-dehydrogenase 5-like (Gene2).
c) succinate-semialdehyde dehydrogenase%2C mitochondrial-like (Gene3). d) asparagine synthetase [glutamine-hydrolyzing] (Gene4). e) Enolase (Gene5).

Estudos filogenéticos foram efetuados para aumentar o conhecimento da possível origem dos dois genes selecionados do clone BAC 70-22F. O estudo foi baseado em alinhamentos de sequências proteicas (Apêndice B) entre os dois genes (Gene1 e Gene2) e os quatro genomas de referência do gênero *Coffea (C. arabica*1 var. Caturra; *C. arabica*2, var. Típica; *C. arabica*3, var. Bourbon; *Coffea canephora* clone IF 200) (Figuras 7 e 8).

Figura 7. Árvore filogenética baseada em alinhamento de sequências proteicas. Gene1: *LRR receptor-like serine/threonine-protein kinase GSO2. C. arabica*1: sequências proteicas da variedade Caturra (NCBI). *C. arabica*2: sequências proteicas da variedade Típica (dados não publicados). *C. arabica*3: sequências proteicas da variedade Bourbon (WCR). *C. canephora*: sequências proteicas do clone IF 200 (*Coffee Genome Hub*).

Figura 8. Árvore filogenética baseada em alinhamento de sequências proteicas. Gene2: *putative receptor-like protein kinase At3g47110. C. arabica*1: sequências proteicas da variedade Caturra (NCBI). *C. arabica*2: sequências proteicas da variedade Típica (dados não publicados). *C. arabica*3: sequências proteicas da variedade Bourbon (WCR). *C. canephora*: sequências proteicas do clone IF 200 (*Coffee Genome Hub*).

O Gene1 ficou no mesmo clado de quatro genes do genoma de *C. arabica*3 var. Bourbon. De acordo com a anotação gênica, esses quatro genes são putativos: *LRR receptor-like serine/threonine-protein kinase GSO2 (C. arabica*3 g6), *uncharacterized protein* LOC113703097 (*C. arabica*3 g7), *LRR receptor-like serine/threonine-protein kinase GSO2 (C. arabica*3 g8) e *uncharacterized protein* LOC113703097 (*C. arabica*3 g9) (Tabela 2). Dentro do clado, o Gene1 ficou mais próximo de um gene não caracterizado de *C. arabica*3 (g9) (Figura 7). Posteriormente, foi realizada a busca pelos domínios proteicos das sequências desse clado utilizando o servidor Pfam. As sequências do clado, correspondentes aos cinco genomas, não apresentaram domínios proteicos caracterizados (Tabela 2).

Tabela 2. Características de sequências proteicas de *Coffea*. Sequência proteica do Gene1 e quatro sequências proteicas agrupadas em um mesmo clado na análise filogenética.

Genoma	Sequência proteica	Anotação	Domínios
BAC 70-22F	Gene1	LRR receptor-like serine/threonine-protein kinase GSO2	-
C. arabica3	g9-g19672.t1	uncharacterized protein LOC113703097	-
C. arabica3	g8-g32952.t1	LRR receptor-like serine/threonine-protein kinase GSO2	-
C. arabica3	g6-g6102.t1	LRR receptor-like serine/threonine-protein kinase GSO2	-
C. arabica3	g7-g22356.t1	uncharacterized protein LOC113703097	-
C. arabica3	g10-g5288.t1	uncharacterized protein LOC113703097	-

O Gene2 ficou agrupado em um clado com dois genes do genoma de *C. arabica*2 (var. Típica) e um do genoma *C. arabica*1 (var. Caturra). Os genes desse clado estão anotados como: *receptor-like serine threonine- kinase EFR (C. arabica*2 g1), *putative receptor-like protein kinase At3g47110 isoform X1 (C. arabica*1 g1), *receptor-like serine threonine- kinase At3g47570 (C. arabica*2 g2) (Tabela 3). A partir de análises utilizando o servidor Pfam foi encontrado um domínio LRR1 na sequência proteica do Gene2. As outras três sequências do clado também apresentaram domínio LRR, mas LRR8 (Tabela 3). O gene receptor-like serine threonine- kinase EFR (C. arabica2 g1), o qual mostrou-se mais próximo do Gene2 no clado (Figura 8), além do domínio LRR8, também possui domínio Pkinase e LRRNT2.

Tabela 3. Características de sequências proteicas de *Coffea*. Sequência proteica do Gene2 e quatro sequências proteicas agrupadas em um mesmo clado na análise filogenética.

Genoma	Sequência proteica	Anotação	Domínios
BAC 70-22F	Gene2	putative receptor-like protein kinase At3g47110	LRR1
C. arabica2	(Scaffold4162HRSCAF 4163) gene-0.17 mRNA-1	receptor-like serine threonine- kinase EFR	LRR8 LRRNT2 Pkinase
C. arabica1	XP027093211.1	putative receptor-like protein kinase At3g47110 isoform X1	LRR8 LRRNT2 Pkinase
C. arabica2	(Scaffold4162HRSCAF 4163) gene-0.13 mRNA-1	receptor-like serine threonine- kinase At3g47570	LRR8 LRRNT2 Pkinase
C. arabica1	g2-XP027093214.1	probable LRR receptor-like serine/threonine-protein kinase At3g47570	LRRNT2 LRR8 LRR8 Pkinase

4. Discussão

Por mio meio dos gráficos de análise de qualidade das sequências do clone BAC 70-22F, gerados pelo FastQC, observou-se que as *reads* obtidas pelo sequenciamento do clone BAC 70-22F apresentaram boa qualidade. O valor obtido de N50 mostra que 50% de toda a montagem está contida em *scaffolds* \geq 1.080 pb. O N50 e o L50 da montagem são respectivamente a média dos maiores *scaffolds* até a metade do genoma (50%) e o número mínimo de *scaffolds* necessários para alcançar o valor N50 (GUREVICH e VYAHNI, 2013). Valores alto de N50 aumentam as chances de encontrar genes completos (LOPES, 2015; FLOREZ *et al.*, 2017).

A biblioteca BAC foi obtida a partir do cafeeiro CIFC 832/2 que corresponde a um híbrido interespecífico natural entre as espécies *C. arabica* e *C. canephora* (CAÇÃO *et al.*, 2013). A provável origem desse híbrido tetraploide fértil é a partir da fecundação de um gameta não reduzido de *C. canephora* com um gameta de *C. arabica* e posteriores eventos de retrocruzamentos com *C. arabica* (BETTENCOURT, 1973; LASHERMES *et al.*, 2000). Essa origem proposta para o HdT, corrobora para a maior similaridade de sequências encontradas entre o clone BAC e o genoma de *C. arabica*. Entretanto, os genótipos derivados do Híbrido de Timor apresentam alta diversidade genética (SETOTAW *et al.*, 2010).

Foram anotados 173 genes em similaridade com o genoma de *C. arabica*. Em relação a esses genes, 173 foram encontrados no subgenoma *C. eugenioides* (C^E), 152 no subgenoma *C. canephora* (C^C) e 15 com sequências não caracterizadas em cromossomos. A espécie *C. arabica* possui dois subgenomas, pois é alotetraplóide (2n=44 cromossomos) (CLARINDO e CARVALHO, 2008) e tem origem da hibridação natural entre duas espécies diploides, *C. eugenioides* (2n=22 cromossomos) e *C. canephora* (2n=22 cromossomos) (LASHERMES *et al.*, 1999). Estudos sobre a origem de *C. arabica* sustentam a hipótese de que esse genoma resulta da associação dos subgenomas C^C e C^E, no entanto, afirmam que há limites taxonômicos entre *C. arabica* e *C. canephora*. Análises filogenéticas apresentam as três espécies em *clusters* distintos, sustentados por um alto valor de *bootstrap* (LASHERMES *et al.*, 1999).

Foram identificados no clone BAC 70-22F genes envolvidos na modulação da defesa em diferentes etapas da infecção e genes como um análogo ao *putative late blight resistance protein homolog R1A-4*, que desencadeia um sistema de defesa, incluindo uma resposta hipersensível que restringe o crescimento do patógeno (HR). Também foram identificados possíveis inibidores de proteases, envolvidos na morte programada ou apoptose controlada por sinalização (*cysteine synthase*) (TALHINHAS *et al.*, 2017), entre outros possíveis genes envolvidos no mecanismo de defesa de plantas (Apêndice A).

Genes candidatos relacionados a mecanismos de defesa semelhantes aos apresentados nesse trabalho, foram identificados por Florez *et al.* (2017). O transcriptoma da interação cafeeiro-*H. vastatrix*, foi analisado, considerando a interação compatível (*C. arabica* var. Caturra CIFC 19/1 inoculado com a raça XXXIII) e incompatível (HdT CIFC 832/1 inoculado com a raça XXXIII). Regiões gênicas com funções similares também foram descritas por Barka *et al.* (2017). Os autores analisaram uma biblioteca subtrativa e realizaram estudos de expressão gênica durante a interação incompatível (HdT CIFC 832/2) e compatível (*C. arabica* cv. Catuaí IAC 44) inoculados com a raça II de *H. vastatrix*. Esses trabalhos sustentam a hipótese de que a região do genoma do HdT CIFC 832/2 clonada e sequenciada no presente trabalho contém genes associados à resistência à *H. vastatrix*.

A partir da anotação dos genes presentes na região genômica do HdT CIFC 832/2 (BAC 70-22F), foram selecionados dois genes candidatos a receptores *like kinase*

(*RLKs*), para a análise de expressão gênica. Os *RLKs* são receptores de reconhecimento padrão (PRRs) que permitem a identificação de uma ampla gama de patógenos levando à PTI, constituindo a primeira linha de defesa da planta (SEKHWAL *et al.*, 2015).

O padrão de expressão do Gene1 sugere uma resistência pré-haustorial na interação incompatível, há reconhecimento do patógeno nas primeiras horas de infecção. O fungo *H. vastatrix* estabelece uma relação biotrófica com o seu hospedeiro em poucas horas após a inoculação, a produção de haustório ocorre logo que o fungo entra nos estômatos e, provavelmente, antes de chegar à cavidade subestomática, ou seja, aproximadamente às 24 hai (RAMIRO *et al.*, 2009).

Resistência pré-haustorial para o mesmo patossistema, genótipos resistente (HdT CIFC 832/2) e suscetível (*C. arabica* var. Caturra CIFC 19/1) inoculados com *H. vastatrix* raça XXXIII, foi observado em trabalhos de citologia (LOPES, 2015). Às 17h, após a inoculação, observaram-se as primeiras respostas citológicas induzidas pelo fungo, houve a morte celular nas células estomáticas de ambos os genótipos. Entretanto, os resultados sugerem impedimento do crescimento do fungo, no cafeeiro resistente, no estágio pré-haustorial, diferente do observado no cafeeiro suscetível. Na interação compatível, o fungo foi capaz de colonizar os tecidos do hospedeiro (LOPES, 2015).

Esse padrão de expressão observado para o Gene1, também foi descrito por Diniz *et al.* (2012), que sugerem uma rápida resposta de resistência em genótipos com interação incompatível. Entretanto, resistência pós-haustorial é geralmente a resposta descrita para a interação cafeeiro – *H. vastatrix.* O fungo cessa o seu crescimento em diferentes estágios da infecção, sendo mais frequentemente após a formação do primeiro haustório (SILVA *et al.*, 2002; RAMIRO *et al.*, 2009).

Já o padrão de expressão do Gene2, é uma diminuição da expressão no genótipo resistente que pode estar relacionada a uma resposta de defesa contra o patógeno. A maior expressão do gene pode cooperar de alguma forma com o sucesso da infecção pelo patógeno. Assim, em interações incompatíveis há a diminuição da expressão desse gene, como foi observado antes das 24 hai, sugerindo também uma defesa préhaustorial. No genótipo suscetível observou-se um aumento da expressão do Gene2 às 24 hai, momento em que há a formação do haustório, o que pode estar permitindo maior adaptação do fungo. Padrão de expressão semelhante ao observado da expressão do Gene2 deste trabalho foi observado por BARROS (2016) em estudos do patossistema soja - *Phakopsora pachyrhiz* em que o fungo pode induzir respostas de defesa da planta nas horas iniciais do seu desenvolvimento, favorecendo o processo de infecção em

genótipos suscetíveis. No genótipo resistente vários genes foram reprimidos e no genótipo suscetível houve a indução na expressão de diferentes genes responsivos.

Para que ocorra uma resposta efetiva das plantas contra determinado estresse, diversos genes devem ser ativados e vários outros devem ser reprimidos. Os genes envolvidos na defesa contra patógeno, mesmo que tenham outra função na célula vegetal, só têm aumento no nível de expressão se for pertinente, evitando gasto de energia desnecessário para a célula (SREE *et al.*, 2015). Assim, outra hipótese para o padrão de expressão do Gene2 seria a diminuição da expressão de um gene que não auxilia nas respostas de defesa do cafeeiro durante a interação incompatível, permitindo o aumento eficiente da expressão de outros genes associados à resistência.

O perfil de expressão encontrado por Florez *et al.* (2017), em relação aos possíveis receptores *like kinase* (*RLK*), durante a interação de *Coffea* com o fungo *H. vastatrix*, revelou que os *RLKs* tiveram uma diminuição na expressão relativa às 24 hai durante a interação no genótipo resistente, em relação as amostras não inoculadas. No genótipo suscetível foi observado um pico de expressão às 24h após a infecção. Os autores relataram que os genes RLKs encontrados possivelmente estão envolvidos nas primeiras respostas de defesa da planta, PTI. O mesmo foi observado para o Gene2 nesse estudo. O reconhecimento do patógeno pelos receptores das plantas desencadeia uma cascatas de sinalização para expressão de genes que resultam na PTI, em poucas horas após a infecção do fungo nas plantas (JONES e DANGL, 2006).

Nos estudos filogenéticos, o percentual de identidade genética entre as *reads* geradas pelo sequenciamento do clone BAC 70-22F e as variedade de *Coffea* mostrou valores baixos em relação a porcentagem de BLAST utilizando o genoma do clone montado em *contigs*. Com esses valores obtidos o indicado é a utilização da estratégia de montagem *de novo*. Pois os genomas de *Coffea* utilizados não são similares o suficiente com a região genômica sequenciada do HdT CIFC 832/2 para a realização da montagem por referência.

A similaridade genética entre o clone BAC 70-22F e a variedade Caturra (*C. arabica*1), a partir da porcentagem de BLAST entre os genomas, apresentou um valor alto em comparação com os outros resultados obtidos no alinhamento entre genomas. Já em relação à espécie *C. canephora*, os valores de similaridade e de identidade genética entre o clone BAC 70-22F e esse genoma apresentaram valores baixos. A análise de introgressão do genoma do HdT com os seus possíveis parentais, *C. canephora* var. Robusta e *C. arabica*, provou a existência de baixa introgressão de *C. canephora* no

HdT (SETOTAW *et al.*, 2010). A alta similaridade genética do HdT e *C. arabica* foram confirmadas por análise de introgressão do genoma, estudo da diversidade genética e análise de agrupamento, sustentando a hipótese de que o HdT é resultante de pelo menos dois retrocruzamentos com *C. arabica* (SETOTAW *et al.*, 2010). Além disso, o fenótipo do HdT é semelhante ao da espécie *C. arabica*, realizam autofecundação e contém um número tetraploide de cromossomos semelhante ao encontrado nessa espécie (HERRERA *et al.*, 2014).

Essas informações disponíveis na literatura corroboram as encontradas no presente trabalho. Entretanto, os genes de resistência (S_H6-S_H9) presentes no HdT, que ainda não foram suplantados (ZAMBOLIM, 2016), vieram da introgressão do genoma de *C. canephora* (HERRERA *et al.*, 2014). Os resultados observados podem indicar que o genoma utilizado *C. canephora* (clone IF 200) e o genoma *C. canephora* parental do HdT (CIFC 832/2) possuem ampla diversidade genética. Pois, dentro da espécie *C. canephora* há uma ampla base genética resultando em uma grande diversidade genética. A espécie possui diferentes grupos varietais, os quais provavelmente descendem da var. Robusta. *C. arabica* e o HdT apresentam maior similaridade com os genótipos do *C. canephora* var. Robusta do que com var. Conilon (SOUZA, 2011).

Na análise filogenética dos genes conservados, o clone alinhou em grupos diferentes de acordo com o gene estudado. Houve maior relação filogenética do clone BAC 70-22F com a variedade Boubon (*C. arabica*3), diferente dos dados encontrados em análises anteriores deste trabalho. No entanto, a menor similaridade foi com o genoma de *C. canephora*, em conformidade com resultados já apresentados.

Nem sempre é possível associar a filogenia detectada por um gene com a filogenia dos organismos. Fenômenos de duplicação, deleção e recombinação podem alterar significativamente a filogenia obtida. (CALDART *et al.*, 2016). Entretanto, as sequências utilizadas são de genes conservados e de cópia única, distribuídos em diferentes regiões do genoma do clone BAC 70-22F (HdT CIFC 832/2). Os resultados observados no estudo podem estar associados à diversidade genética apresentada pelo HdT. Setotaw *et al.* (2010), com o objetivo de investigar a diversidade genética do HdT, utilizando marcadores moleculares, concluíram ao analisarem 48 acessos de um banco de germoplasma, que o HdT apresenta considerável diversidade genética e ainda ampla variabilidade genética. Assim, além de ser uma importante fonte de genes para resistência a doenças, os genótipos do HdT possuem variações genéticas que são importantes no desenvolvimento de cultivares com resistência durável.

As árvores filogenéticas dos dois genes candidatos a RLKs, baseada no alinhamento de sequências proteicas dos genes e dos quatro genomas de *Coffea*, revelaram que o Gene1 e o Gene2 ficaram diferentes dos genes pertencentes ao genoma de *C. canephora*. Esses resultados sugerem que os dois genes pertencentes ao clone BAC 70-22F possuem relação filogenética mais próxima com os genes do genoma de *C. arabica*, assim como os resultados já apresentados neste trabalho.

O Gene2 e as três sequências agrupadas em um mesmo clado apresentaram domínios LRR. O domínio LRR possui importante função na defesa da planta contra patógenos, tem atuação tanto na PTI quanto na ETI. Na PTI os PRR localizados na superfície da membrana celular ou no interior da célula geralmente apresentam o domínio LRR. Além disso, o domínio LRR está envolvido no reconhecimento específico de efetores de patógenos, podendo interagir com a proteína Avr ou com um complexo de proteínas formado durante o processo de infecção (RAFIQI et al., 2009; RIBAS et al., 2011). No RT-qPCR apresentado nesse trabalho, o Gene2 apresentou alta expressão na interação incompatível (0 hai) e logo nas primeiras horas após a infecção o padrão de expressão diminuiu. Esse resultado pode estar relacionado com a atuação do gene no reconhecimento do patógeno no momento inicial da infecção. O mecanismo de defesa PTI ocorre imediatamente após o contato com o patógeno e é considerada a primeira linha de defesa induzida na planta, reconhecendo padrões moleculares conservados do patógeno (JONES e DANGL, 2006). Observou-se que na interação compatível houve um aumento da expressão do Gene2 após as 24 hai, momento em que o haustório já se formou. Essa defesa tardia no genótipo suscetível possivelmente está relacionada à suscetibilidade do genótipo, corroborando a importância da atuação de proteínas que contêm o domínio LRR no reconhecimento do patógeno.

5. Conclusões

As informações obtidas no presente trabalho são relevantes para ampliar o conhecimento sobre genes de resistência do cafeeiro à *H. vastatrix* e auxiliar na melhor compreensão da diversidade genética em genótipos do HdT. Pois, permitiram caracterizar uma região genômica do Híbrido de Timor CIFC 832/2, correspondente ao clone BAC 70-22F e potenciais genes com associação à resistência desse cafeeiro à *H. vastatrix* foram descritos. Dentre esses genes, dois genes se destacaram, sendo eles possíveis receptores *like kinases* (RLKs) com perfil de expressão correspondente a uma
resposta de resistência pré-haustorial. As análises de expressão gênica mostraram um perfil de expressão coerente com os já apresentados para o patossistema *Coffea – H. vastatrix*. As análises filogenéticas desses genes, bem como da região genômica clonada, demonstraram maior similaridade do clone BAC 70-22F com o genoma da espécie *C. arabica* e corroboraram a diversidade genética descrita para o HdT.

Referências Bibliográficas

ANDREWS, S. FastQC: a quality control tool for high throughput sequence data. 2010.

AUGUSTUS. Disponível em: <http://augustus.gobics.de/> Acesso em 20 de março de 2018.

AVELINO, J.; CRISTANCHO, M.; GEORGIOU, S.; IMBACH, P.; AGUILAR, L.; BORNEMANN, G.; LÄDERACH, P.; ANZUETO, F.; HRUSKA, A.J.; MORALES, C. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. **Food Security**, v. 7, n. 2, p. 303-321. 2015.

BANKEVICH, A.; NURK, S.; ANTIPOV, D.; ANTIPOV, D.; GUREVICH, A. A.; DVORKIN, M.; KULIKOV. A.S.; LESIN, V.M.; NIKOLENKO, S.I.; PHAM, S.; PRJIBELSKI, A.D.; PYSHKIN, A.V.; SIROTKIN, A.V.; VYAHHI, N.; TESLER, G.; ALEKSEYEV, M.A.; PEVZNER, P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. **Journal of computational biology**, v. 19, n. 5, p. 455-477. 2012.

BARKA, G. D.; CAIXETA, E. T.; de ALMEIDA, R. F.; ALVARENGA, S. M.; ZAMBOLIM, L. Differential expression of molecular rust resistance components have distinctive profiles in *Coffea arabica - Hemileia vastatrix* interactions. **European journal of plant pathology**, v. 149, n. 3, p.543-561. 2017.

BARROS, V. A. Vias de sinalização mediadas por ácido salicílico e metil-jasmonato e papel de GmbZIP89 em resposta à infecção por *Phakopsora pachyrhizi* em genótipos contrastantes de soja. Dissertação (Mestrado em Bioquímica Aplicada) – Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG. 2016.

BECK, M.; HEARD, W.; MBENGUE, M.; ROBATZEK, S. The INs and OUTs of pattern recognition receptors at the cell surface. **Current opinion in plant biology**, v. 15, n. 4, p. 367-374. 2012.

BETTENCOURT, A. J. **Considerações sobre o "Híbrido de Timor".** Campinas: Instituto Agronômico, 20p. (Circular n° 23). 1973.

BETTENCOURT, A. J.; RODRIGUES JÚNIOR. C.J. Principles and practice of coffee breeding for resistance to rust and other diseases In: CLARKE, R.J. and MACRAE, R (Ed.). Coffee: Volume 4 – Agronomy. London: **Elsevier Applied Science**, cap. 6, p.199-234. 1988.

CABRAL, P. G. C.; ZAMBOLIM, E. M.; ZAMBOLIM, L.; LELIS, T. P.; CAPUCHO, A. S & CAIXETA, E. T. Identification of a new race of *Hemileia vastatrix* in Brazil. **Australasian Plant Disease Notes**, v. 4, n. 1, p. 129–130. 2009.

CAÇÃO, S. M. B; SILVA, N. V.; DOMINGUES, D. S; VIEIRA, L. G. E.; DINIZ, L. E. C.; ALVEZ, C. S. G.; ANDRADE, A. C.; CARPETIERI-PIPOLO, V.; PEREIRA, L;F.P. Construction and characterization of a BAC library from the *Coffea arabica* genotype Timor Hybrid CIFC 832/2. **Genetica**, v. 141, n. 4-6, p. 217-226. 2013.

CALDART, E. T.; MATA, H.; CANAL, C. W.; RAVAZZOLO, A. P. Phylogenetic analysis: basic concepts and its use as a tool for virology and molecular epidemiology. Acta Scientiae Veterinariae, 44. 2016.

CAPUCHO, A. S.; CAIXETA, E. T.; ZAMBOLIM, E. M.; ZAMBOLIM, L. Herança da resistência do Híbrido de Timor UFV 443-03 à ferrugem do cafeeiro. Pesq. **Agrop. Bras.**, Brasília. 44: 276-282. 2009.

CAPUCHO, A. S.; MACIEL-ZAMBOLIM, E.; FREITAS, R.L.; HADDAD, F.; CAIXETA, E. T.; ZAMBOLIM, L. Identification of race XXXIII of *Hemileia vastatrix* on *Coffea arabica* Catimor derivatives in Brazil. **Austral Plant Dis Notes**, v. 7, p. 189–191. 2012.

CARVALHO, V. L.; CUNHA, R. L.; SILVA, N. R. N. Alternativas de controle de doenças do cafeeiro. **Coffee Science**, Lavras, v. 7, n. 1, p. 42-49, 2012.

CLARINDO, W. R.; CARVALHO, C. R. First *Coffea arabica* karyogram showing that this species is a true allotetraploid. **Plant Systematics and Evolution**. Sep 1;274(3-4):237. 2008.

COFFEEGENOMEHUB.Disponívelem:<http://coffee-</th>genome.org/coffeacanephora>Acesso em 20 de março de 2018.

CRUZ, F.; KALAOUN, S.; NOBILE, P.; COLOMBO, C.; ALMEIDA, J.; BARROS, L.M.; ROMANO, E.; GROSSI-DE-SÁ, M.F.; VASLIN, M.; ALVES-FERREIRA, M. Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. **Molecular Breeding**. May 1;23(4):607-16. 2009.

DINIZ, I.; TALHINHAS, P.; AZINHEIRA, H. G.; VÁRZEA, V.; MEDEIRA, C.; MAIA, I.; PETITOT, A. S.; NICOLE; M.; FERNANDEZ, D.; do CÉU SILVA, M. Cellular and molecular analyses of coffee resistance to *Hemileia vastatrix* and nonhost resistance to *Uromyces vignae* in the resistance-donor genotype HDT832/2. European journal of plant pathology. May 1;133(1):141-57. 2012.

DIOLA, V. Resistência à ferrugem do cafeeiro: mapeamento genético, físico e análise da expressão gênica em resposta a infecção de *H. vastatrix*. Tese (Doutorado em Fisiologia Vegetal) – Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG. 2009.

DIOLA, V.; DE BRITO, G. G.; CAIXETA, E. T.; MACIEL-ZAMBOLIM, E.; SAKIYAMA, N. S.; LOUREIRO, M. E.; High-density genetic mapping for coffee leaf rust resistance. **Tree genetics & genomes**, 7(6), pp.1199-1208. 2011.

DODDS, P. N.; RAFIQI, M.; GAN, P. H. P.; HARDHAM, A. R.; JONES, D. A.; ELLIS, E. G. Effectores of biotrophic fungi and oomycetes: pathogenicity factors and triggers of host resistance. **New Phytologist**. 183: 993-1000. 2009.

EDWARDS, D.; BATLEY, J. Plant bioinformatics: from genome to phenome. **Trends in biotechnology**, v. 22, n. 5, p. 232-237. 2004.

ETIENNE, H.; ANTHONY, F.; DUSSERT, S.; FERNANDEZ, D.; LASHERMES, P.; BERTRAND, B. Biotechnological applications for the improvement of coffee (*Coffea arabica* L.). In Vitro Cellular & Developmental Biology-Plant, v. 38, n. 2, p. 129-138. 2002.

FELSENSTEIN, J. Confidence Limits on Phylogenies: An Approach Using The Boostrap. **Evolution** (N Y) 39:783–791. 1985.

FERNANDES-BRUM, C. N.; REZENDE, P. M.; RIBEIRO, T. H. C.; de OLIVEIRA, R. R.; de SOUZA CARDOSO, T. C.; do AMARAL, L. R. GOMES, M. S.; CHALFUN-JUNIOR, A. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. **PloS One**, v. 12, n. 4, p. e0176333. 2017.

FINN, R. D.; BATEMAN, A.; CLEMENTS, J.; COGGILL, P.; EBERHARDT, R. Y.; EDDY, S. R.; HEGER, A.; HETHETINGGTON, K; HOLM, L.; MISTRY, J.; SONNHAMMER, E. L. L., TADE, J.; PUNTA, M. Pfam: the protein families database. **Nucleic acids research**, v. 42, n. D1, p. D222-D230. 2013.

FLOR, H.H. Current status of the gene-for-gene concept. Annual review of phytopathology, v. 9, n. 1, p. 275-296. 1971.

FLOREZ, J. C.; MOFATTO, L. S.; DO LIVRAMENTO, R. F. L.; FERREIRA, S. S.; ZAMBOLIM, E. M.; CARAZZOLLE, M. F.; ZAMBOLIM, L.; CAIXETA, E. T. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to *Hemileia vastatrix* infection. **Plant Molecular Biology**, v. 95, p. 607-623. 2017.

FRANTZESKAKIS, L.; DI PIETRO, A.; REP, M.; SCHIRAWSKI, J.; WU, C. H.; PANSTRUGA, R. Rapid evolution in plant–microbe interactions–a molecular genomics perspective. **New Phytologist**. 2019.

GEN SCRIPT. Disponível em: https://www.genscript.com/ Acesso em 26 de fevereiro de 2019.

GUREVICH, A.; VYAHNI, N. QUAST: quality assessment tool for genome assemblies. **Bioinformatics**, v. 29, n. 8, p. 1072-1075. 2013.

HEATH, M. C. Nonhost resistance and nonspecific plant defenses. Current opinion in plant biology, v. 3, n. 4, p. 315-319. 2000.

HERRERA, J. C.; VILLEGAS, A. M.; GARCIA, F. A.; DEREEPER, A.; COMBES, M. C.; POSADA, H. E.; LASHERMES, P. Genomic relationships among different Timor hybrid (*Coffea* L.) accessions as revealed by SNP identification and RNA-Seq analysis. In: Advances in Computational Biology. Springer, Cham, p. 161-168. 2014.

JONES, J. D. G.; DANGL, J. L. The plant immune system. **Nature**, v. 444, n. 7117, p. 323. 2006.

KUULASMAA T. **Oligo Explorer** 1.5. University of Easter Finland, Kuopyo, Finland. 2010.

KUMAR, K. R. R.; KIRTI, P. B. Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin. **Plant Mol Biol**, v. 75:497–513. 2011.

KUMAR, S.; STECHER, G.; LI, M.; KNYAZ, C.; TAMURA, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. **Molecular Biology and Evolution**, 35:1547-1549. 2018.

LASHERMES, P.; COMBES, M. C.; ROBERT, J.; TROUSLOT, P.; D'HONT, A.; ANTHONY, F.; CHARRIER, A. Molecular characterisation and origin of the *Coffea arabica* L. genome. **Molecular and General Genetics MGG**, v. 261, n. 2, p. 259-266. 1999.

LASHERMES, P.; ANDRZEJEWSKI, S.; BERTRAND, B.; COMBES, M. C.; DUSSERT, S.; GRAZIOSI, G.; ANTHONY, F. Molecular analysis of introgressive breeding in coffee (*Coffea arabica* L.). **Theoretical and applied genetics**, v. 100, n. 1, p. 139-146. 2000.

LIN, C.; MUELLER, L. A.; CARTHY, J. M.; CROUZILLAT, D.; PETIARD, D.; TANKSLEY, S. D. Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. **Theoretical and applied genetics**, v. 112, n. 1, p. 114-130. 2005.

LOHSE, M.; BOLGER, A. M.; NAGEL, A.; FERNIE, A. R.; LUNN, J. E.; STITT, M.; USADEL, B. R obi NA: a user-friendly, integrated software solution for RNA-Seqbased transcriptomics. **Nucleic Acids Res.**, v. 40, n.1, p. 622-627. 2012.

LOPES, R. L. F. Análise Citológica e Perfil de Expressão Gênica de *Hemileia vastatrix* (RaçaXXXIII) na Interação Com o Cafeeiro. Tese (Doutorado em Genética e Melhoramento) – Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, MG. 2015.

MENDGEN, K., HAHN, M. Plant infection and the establishment of fungal biotrophy. **Trends in plant science**, v. 7, n. 8, p. 352-356. 2002.

MICHNO, J. M.; STUPAR, R. M. The importance of genotype identity, genetic heterogeneity, and bioinformatic handling for properly assessing genomic variation in transgenic plants. **BMC biotechnology**, v. 18, n. 1, p. 38. 2018.

MIKHEENKO, A.; PRJIBELSKI, A.; SAVELIEV, V.; ANTIPOV, D.; GUREVICH, A. Avaliação de montagem de genoma versátil com QUAST-LG. **Bioinformática** 34 (13): i142-i150. 2018.

MOTULSKY, H. J. Prism 5 Statistics Guide, Software GraphPad. Inc., San Diego CA. 2007.

NATIONAL CENTER FOR BIOTECHNOLOGY IMFORMATION. Disponível em: https://www.ncbi.nlm.nih.gov/ Acesso em 20 de março de 2018.

NORONHA-WAGNER, M.; BETTENCOURT, A. Genetic study of the resistance of *coffea* spp. to leaf rust: i. identification and behavior of four factors conditioning disease reaction in *Coffea arabica* to twelve physiologic races of *Hemileia vastatrix*. Canadian **Journal of Botany**, v. 45, n. 11, p. 2021-2031. 1967.

PESTANA, K. N.; CAPUCHO, A. S.; CAIXETA, E. T.; DE ALMEIDA, D. P.; ZAMBOLIM, E. M.; CRUZ, C. D.; ZAMBOLIM, L.; PEREIRA, A. A.; OLIVEIRA, A. C. B.; SAKIYAMA, N. S. Inheritance study and linkage mapping of resistance loci to *Hemileia vastatrix* in Híbrido de Timor UFV 443-03. **Tree genetics & genomes**, v. 11, n. 4, p. 72. 2015.

RAFIQI, M.; BERNOUX, M.; ELLIS, J. G.; DODDS, P. N. In the trenches of plant pathogen recognition: Role of NB-LRR proteins. In: **Seminars in cell & developmental biology**. Academic Press, p. 1017-1024. 2009.

RAMIRO, D. A.; Escoute, J.; Petitot, A. S.; Nicole, M.; Maluf, M. P.; Fernandez, D. Biphasic haustorial differentiation of coffee rust (*Hemileia vastatrix* race II) associated with defence responses in resistant and susceptible coffee cultivars. **Plant Pathology**, v. 58, n. 5, p. 944-955. 2009.

REDDY, A. C.; NARESH, P. The crucial role of R-genes/RGAs in host-microbial interactions and plant immunity. **Research Journal of Biotechnology**, vol, v. 13, p. 4. 2018.

RIBAS, A. F.; CENCI, A.; COMBES, M. C.; ETIENNE, H.; LASHERMES, P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. **BMC genomics**, v. 12, n. 1, p. 240. 2011.

SEKHWAL, M.; LI, P.; LAM, I.; WANG, X.; CLOUTIER, S.; YOU, F. Disease resistance gene analogs (RGAs) in plants. **International journal of molecular sciences**, v. 16, n. 8, p. 19248-19290. 2015.

SETOTAW, T. A.; TEXEIRA, C. E.; FEREIRE, P. G; ZAMBOLIM, E. M.; PEREIRA, A. A; SAKIYAMA, N. S. Breeding potential and genetic diversity of" Híbrido do Timor" coffee evaluated by molecular markers. **Crop breeding and applied biotechnology**, v. 10, n. 4, p. 298-304. 2010.

SILVA, M. C.; NICOLE, M.; GUERRA-GUIMARÃES, L.; RODRIGUES JR, C. J. Hypersensitive cell death and post-haustorial defence responses arrest the orange rust (*Hemileia vastatrix*) growth in resistant coffee leaves. **Physiological and Molecular Plant Pathology**, v. 60, n. 4, p. 169-183. 2002.

SILVA, R. A.; ZAMBOLIM, L.; CASTRO, I. S. L.; RODRIGUES, H. S.; CRUZ, C. D.; CAIXETA, E. T. The Híbrido de Timor germplasm: identification of molecular diversity and resistance sources to coffee berry disease and leaf rust. **Euphytica**, v. 214, n. 9, p. 153. 2018.

SOUZA, F. F. **Diversidade genética, estrutura populacional e mapeamento associativo em** *Coffea canephora***.** Tese (Doutorado em Genética e Melhoramento) – Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, MG. 2011. SOUSA, T. V; CAIXETA, E. T.; ALKIMIM, E. R.; DE OLIVEIRA, A. C. B.; PEREIRA, A. A.; SAKIYAMA, N. S. JÚNIOR, M. F. R. R.; ZAMBOLIM, L. Population structure and genetic diversity of coffee progenies derived from Catuaí and Híbrido de Timor revealed by genome-wide SNP marker. **Tree genetics & genomes**, v. 13, n. 6, p. 124. 2017.

SREE, K.; SOWJANYA; R. A. J. A. M.; MANCHIKATLA, V. Genetic engineering strategies for biotic stress tolerance in plants. In: **Plant Biology and Biotechnology**. Springer, New Delhi, p. 611-622. 2015.

STANKE, M.; STEINKAMP, R.; WAACK, S.; MORGENSTERN, B. AUGUSTUS: a web server for gene finding in eukaryotes. **Nucleic acids research**, v. 32, n. suppl 2, p. W309-W312. 2004.

TALHINHAS, P.; BATISTA, D.; DINIZ, I.; VIEIRA, A.; SILVA, D.N.; LOUREIRO, A., TAVERES, S.; PEREIRA, A.P.; AZINHEIRA, H. G.; GUERRERA-GUINARÃES, L.; VÁRZEA, V.; SILVA, M. C. The coffee leaf rust pathogen *Hemileia vastatrix*: one and a half centuries around the tropics. **Molecular plant pathology**, v. 18, n. 8, p. 1039-1051. 2017.

TAMURA, K.; NEI, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. **Mol Biol Evol**. 1993.

TRAPNELL, C.; PACHTER, L.; SALZBERG, S. L. TopHat: discovering splice junctions with RNA-Seq. **Bioinformatics**, v. 25, n. 9, p. 1105-1111. 2009.

ZAMBOLIM, L. Current status and management of coffee leaf rust in Brazil. **Tropical Plant Pathology**, v. 41, n. 1, p. 1-8. 2016.

WORLD COFFEE RESEARCH. Disponível em: <(https://worldcoffeeresearch.org/> Acesso em 20 de março de 2018.

Apêndice A. Anotação gênica do clone BAC 70-22F utilizando a ferramenta BLAST. Foram anotados 991 genes. 340 genes anotados em similaridade com *C. arabica* (var. Caturra). 337 genes anotados em similaridade com *C. eugenioides*. 314 genes anotados em similaridade com *C. canephora* (clone IF 200).

ORFs	Locos	Genoma	%ID	E-value	Cobertura	Anotação
NODE_1_length_6472_cov_8.48366:g1.t1	NC_039902.1 3c	C. arabica	49.55	0.0	98.00	uncharacterized protein LOC113735882
NODE_1_length_6472_cov_8.48366:g1.t1	chr10	C. canephora	32.48	4,00E-26	15.00	Putative Probable LRR receptor-like serine/threonine-protein kinase
NODE_1_length_6472_cov_8.48366:g1.t1	NC_040035.1 1eu	C. eugenioides	61.85	0.0	60.00	uncharacterized protein LOC113769237
NODE_1_length_6472_cov_8.48366:g1.t2	NC_039902.1 3c	C. arabica	57.96	0.0	61.00	uncharacterized protein LOC113735882
NODE_1_length_6472_cov_8.48366:g1.t2	chr10	C. canephora	32.48	5,00E-26	15.00	Putative Probable LRR receptor-like serine/threonine-protein kinase
NODE_1_length_6472_cov_8.48366:g1.t2	NC_040035.1 1eu	C. eugenioides	62.34	0.0	61.00	uncharacterized protein LOC113769237
NODE_2_length_6312_cov_4.20642:g2.t1	NC_039915.1 9e	C. arabica	75.38	1,00E-60	57.00	uncharacterized protein LOC113709996
NODE_2_length_6312_cov_4.20642:g2.t1	chr0	C. canephora	58.33	8,00E-18	31.00	Hypothetical protein
NODE_2_length_6312_cov_4.20642:g2.t1	NC_040037.1 3eu	C. eugenioides	73.61	9,00E-28	31.00	uncharacterized protein LOC113766718
NODE_10_length_2753_cov_2.94619:g8.t1	NC_039902.1 3c	C. arabica	65.03	0.0	95.00	uncharacterized protein LOC113735882
NODE_10_length_2753_cov_2.94619:g8.t1	chr10	C. canephora	36.55	5,00E-27	25.00	Putative Probable LRR receptor-like serine/threonine-protein kinase
NODE_10_length_2753_cov_2.94619:g8.t1	NC_040036.1 2eu	C. eugenioides	73.94	0.0	56.00	uncharacterized protein LOC113760043
NODE_12_length_2445_cov_5.93412:g9.t1	NC_039901.1 2e	C. arabica	61.18	1,00E-25	36.00	uncharacterized protein LOC113729084
NODE_12_length_2445_cov_5.93412:g9.t1	NC_040036.1 2eu	C. eugenioides	61.18	6,00E-26	36.00	uncharacterized protein LOC113759824
NODE_17_length_2074_cov_4.61592:g10.t1	NC_039915.1 9e	C. arabica	40.62	3,00E-40	44.00	uncharacterized protein LOC113709957
NODE_17_length_2074_cov_4.61592:g10.t1	NW_020863778.1 scaffold	C. eugenioides	42.55	2,00E-40	37.00	uncharacterized protein LOC113757670
NODE_17_length_2074_cov_4.61592:g10.t2	NC_039915.1 9e	C. arabica	40.62	2,00E-40	45.00	uncharacterized protein LOC113709957
NODE_17_length_2074_cov_4.61592:g10.t2	NW_020863778.1 scaffold	C. eugenioides	42.55	2,00E-40	37.00	uncharacterized protein LOC113757670
NODE_24_length_1689_cov_2.3995:g13.t1	NC_039914.1 9c	C. arabica	84.11	5,00E-84	53.00	serologically defined colon cancer antigen 8 homolog
NODE_24_length_1689_cov_2.3995:g13.t1	NC_040035.1 1eu	C. eugenioides	60.56	4,00E-54	64.00	uncharacterized protein LOC113770239
NODE_24_length_1689_cov_2.3995:g13.t2	NC_039914.1 9c	C. arabica	84.11	1,00E-83	52.00	serologically defined colon cancer antigen 8 homolog
NODE_24_length_1689_cov_2.3995:g13.t2	NC_040035.1 1eu	C. eugenioides	60.56	8,00E-54	63.00	uncharacterized protein LOC113770239
NODE_29_length_1476_cov_2.56469:g16.t1	NC_039903.1 3e	C. arabica	58.70	9,00E-167	100.00	uncharacterized protein LOC113737292
NODE_29_length_1476_cov_2.56469:g16.t1	NC_040044.1 10eu	C. eugenioides	60.22	7,00E-170	100.00	uncharacterized protein LOC113750488
NODE_29_length_1476_cov_2.56469:g16.t2	NC_039903.1 3e	C. arabica	58.70	1,00E-166	97.00	uncharacterized protein LOC113737292
NODE_29_length_1476_cov_2.56469:g16.t2	NC_040044.1 10eu	C. eugenioides	60.22	2,00E-169	97.00	uncharacterized protein LOC113750488
NODE_44_length_1234_cov_3.88678:g21.t1	NC_039899.1 1e	C. arabica	71.78	0.0	100.00	uncharacterized protein LOC113692421
NODE_44_length_1234_cov_3.88678:g21.t1	NC_040035.1 1eu	C. eugenioides	72.26	0.0	100.00	uncharacterized protein LOC113768532
NODE_61_length_936_cov_2.05937:g27.t1	NC_039905.1 4e	C. arabica	71.88	4,00E-88	100.00	protein STRICTOSIDINE SYNTHASE-LIKE 12-like isoform X2

e At4g08850

e At4g08850

e At4g08850

NODE_61_length_936_cov_2.05937:g27.t1 NODE 61 length 936 cov 2.05937:g27.t1 NODE 61 length 936 cov 2.05937:g27.t2 NODE_61_length_936_cov_2.05937:g27.t2 NODE_61_length_936_cov_2.05937:g27.t2 NODE 62 length 907 cov 1.42651:g28.t1 NODE 62 length 907 cov 1.42651:g28.t1 NODE_62_length_907_cov_1.42651:g28.t1 NODE_74_length_772_cov_1.49784:g29.t1 NODE_74_length_772_cov_1.49784:g29.t1 NODE 74 length 772 cov 1.49784:g29.t1 NODE_88_length_724_cov_1.32921:g35.t1 NODE_88_length_724_cov_1.32921:g35.t1 NODE_88_length_724_cov_1.32921:g35.t1 NODE_95_length_683_cov_1.15347:g39.t1 NODE_95_length_683_cov_1.15347:g39.t1 NODE_95_length_683_cov_1.15347:g39.t1 NODE_100_length_671_cov_1.90741:g42.t1 NODE_100_length_671_cov_1.90741:g42.t1 NODE_100_length_671_cov_1.90741:g42.t1 NODE_104_length_660_cov_1.56261:g43.t1 NODE_104_length_660_cov_1.56261:g43.t1 NODE_104_length_660_cov_1.56261:g43.t1 NODE_105_length_656_cov_1.3886:g44.t1 NODE_105_length_656_cov_1.3886:g44.t1 NODE_105_length_656_cov_1.3886:g44.t1 NODE_110_length_645_cov_1.68486:g49.t1 NODE_110_length_645_cov_1.68486:g49.t1 NODE_117_length_632_cov_2.09009:g53.t1 NODE_117_length_632_cov_2.09009:g53.t1 NODE_117_length_632_cov_2.09009:g53.t1 NODE_118_length_632_cov_1.58378:g54.t1 NODE_118_length_632_cov_1.58378:g54.t1 NODE_118_length_632_cov_1.58378:g54.t1

chr4	C. canephora	69.79	1,00E-81	100.00
NC_040038.1 4eu	C. eugenioides	61.83	2,00E-69	96.00
NC_039905.1 4e	C. arabica	72.41	6,00E-96	93.00
chr4	C. canephora	69.95	1,00E-82	88.00
NC_040038.1 4eu	C. eugenioides	61.38	5,00E-71	87.00
NC_039912.1 8e	C. arabica	80.62	4,00E-48	100.00
chr0	C. canephora	67.16	2,00E-28	53.00
NW_020864190.1 scaffold	C. eugenioides	76.98	2,00E-47	100.00
NC_039904.1 4c	C. arabica	100.00	1,00E-42	90.00
chr4	C. canephora	100.00	4,00E-43	90.00
NC_040038.1 4eu	C. eugenioides	100.00	4,00E-43	90.00
NC_039913.1 8c	C. arabica	58.33	9,00E-59	96.00
chr8	C. canephora	58.33	3,00E-58	96.00
NC_040038.1 4eu	C. eugenioides	58.33	5,00E-59	96.00
NW_020850478.1 scaffold	C. arabica	48.78	5,00E-27	50.00
chr7	C. canephora	48.78	1,00E-26	50.00
NC_040045.1 11eu 11eu	C. eugenioides	48.78	3,00E-27	50.00
NC_039901.1 2e	C. arabica	54.69	1,00E-18	44.00
chr2	C. canephora	54.69	5,00E-19	44.00
NC_040036.1 2eu	C. eugenioides	54.69	8,00E-19	44.00
NC_039904.1 4c	C. arabica	35.41	7,00E-29	95.00
chr4	C. canephora	35.41	2,00E-29	95.00
NC_040038.1 4eu	C. eugenioides	35.41	6,00E-29	95.00
NC_039903.1 3e	C. arabica	38.02	2,00E-21	93.00
chr3	C. canephora	38.54	3,00E-23	93.00
NC_040037.1 3eu	C. eugenioides	38.54	4,00E-22	93.00
NC_039903.1 3e	C. arabica	57.38	2,00E-17	75.00
NC_040041.1 7eu	C. eugenioides	53.97	1,00E-17	77.00
NC_039907.1 5c	C. arabica	29.58	3,00E-15	90.00
chr5	C. canephora	29.44	6,00E-16	90.00
NC_040039.1 5eu	C. eugenioides	29.11	5,00E-15	90.00
NC_039907.1 5c	C. arabica	22.83	2,00E-10	96.00
chr5	C. canephora	23.74	4,00E-10	87.00
NC_040039.1 5eu	C. eugenioides	25.73	9,00E-11	76.00

Putative Strictosidine synthase 1
protein STRICTOSIDINE SYNTHASE-LIKE 11-like
protein STRICTOSIDINE SYNTHASE-LIKE 12-like isoform X2
Putative Strictosidine synthase 1
protein STRICTOSIDINE SYNTHASE-LIKE 11-like
uncharacterized protein LOC113704544
Hypothetical protein
uncharacterized protein LOC113758088
diphthine methyltransferase homolog
Putative WD repeat-containing protein 85 homolog
diphthine methyltransferase homolog isoform X2
delta-aminolevulinic acid dehydratase%2C chloroplastic-like
Delta-aminolevulinic acid dehydratase%2C chloroplastic
delta-aminolevulinic acid dehydratase%2C chloroplastic-like
monothiol glutaredoxin-S7%2C chloroplastic
Uncharacterized monothiol glutaredoxin ycf64-like
monothiol glutaredoxin-S7%2C chloroplastic
glycine-rich protein 2-like
Glycine-rich protein 2b
glycine-rich protein 2
aldehyde dehydrogenase family 2 member B4%2C mitochondrial-like
Aldehyde dehydrogenase family 2 member B4%2C mitochondrial
aldehyde dehydrogenase family 2 member B4%2C mitochondrial-like
carboxyl-terminal-processing peptidase 2%2C chloroplastic-like isofor
Carboxyl-terminal-processing protease
carboxyl-terminal-processing peptidase 2%2C chloroplastic isoform X
uncharacterized protein LOC113737438
uncharacterized protein LOC113777170
probable lipid-A-disaccharide synthase%2C mitochondrial isoform X2
Putative Lipid-A-disaccharide synthase
probable lipid-A-disaccharide synthase%2C mitochondrial isoform X1
DUF21 domain-containing protein At1g55930%2C chloroplastic-like is
DUF21 domain-containing protein At1g55930%2C chloroplastic
putative DUF21 domain-containing protein At3g13070%2C chloroplas

like oform X1

m X1

Χ1 ke isoform X3

plastic isoform X2

NODE_128_length_614_cov_1.73557:g61.t1	NC_039911.1 7e	C. arabica	27.73	8,00E-08	99.00	cellulose synthase A catalytic subunit 5 [UDP-forming]-like
NODE_128_length_614_cov_1.73557:g61.t1	chr7	C. canephora	27.98	1,00E-09	98.00	Cellulose synthase A catalytic subunit 5 [UDP-forming]
NODE_128_length_614_cov_1.73557:g61.t1	NC_040041.1 7eu	C. eugenioides	27.73	4,00E-08	99.00	cellulose synthase A catalytic subunit 5 [UDP-forming]-like
NODE_129_length_613_cov_2.95522:g62.t1	NC_039905.1 4e	C. arabica	98.40	6,00E-54	100.00	homeobox protein knotted-1-like 1
NODE_129_length_613_cov_2.95522:g62.t1	chr4	C. canephora	100.00	1,00E-45	86.00	Putative uncharacterized protein
NODE_129_length_613_cov_2.95522:g62.t1	NC_040038.1 4eu	C. eugenioides	98.40	3,00E-54	100.00	homeobox protein knotted-1-like 1
NODE_132_length_607_cov_3.49811:g65.t1	NC_039904.1 4c	C. arabica	93.10	3,00E-48	97.00	uncharacterized protein LOC113739892 isoform X1
NODE_132_length_607_cov_3.49811:g65.t1	chr4	C. canephora	93.10	1,00E-48	97.00	unknown protein%3B FUNCTIONS IN
NODE_132_length_607_cov_3.49811:g65.t1	NC_040038.1 4eu	C. eugenioides	93.10	2,00E-48	97.00	uncharacterized protein LOC113768344 isoform X1
NODE_132_length_607_cov_3.49811:g65.t2	NC_039904.1 4c	C. arabica	100.00	8,00E-48	100.00	uncharacterized protein LOC113739892 isoform X1
NODE_132_length_607_cov_3.49811:g65.t2	chr4	C. canephora	100.00	3,00E-48	100.00	unknown protein%3B FUNCTIONS IN
NODE_132_length_607_cov_3.49811:g65.t2	NC_040038.1 4eu	C. eugenioides	100.00	4,00E-48	100.00	uncharacterized protein LOC113768344 isoform X1
NODE_140_length_596_cov_1.30829:g70.t1	NC_039908.1 6c	C. arabica	29.65	3,00E-21	93.00	thioredoxin reductase NTRC-like
NODE_140_length_596_cov_1.30829:g70.t1	chr6	C. canephora	29.65	9,00E-22	93.00	NADPH-dependent thioredoxin reductase 3
NODE_140_length_596_cov_1.30829:g70.t1	NC_040040.1 6eu	C. eugenioides	29.65	5,00E-22	93.00	thioredoxin reductase NTRC
NODE_144_length_589_cov_2.50195:g74.t1	NC_039918.1 11c	C. arabica	29.56	2,00E-16	98.00	spermidine synthase-like
NODE_144_length_589_cov_2.50195:g74.t1	chr2	C. canephora	25.47	4,00E-12	96.00	Spermine synthase
NODE_144_length_589_cov_2.50195:g74.t1	NC_040045.1 11eu 11eu	C. eugenioides	28.93	7,00E-16	98.00	spermidine synthase
NODE_146_length_588_cov_1.42661:g76.t1	NC_039898.1 1c	C. arabica	36.95	5,00E-31	95.00	lysosomal beta glucosidase-like
NODE_146_length_588_cov_1.42661:g76.t1	chr1	C. canephora	36.95	2,00E-31	95.00	Putative Lysosomal beta glucosidase
NODE_146_length_588_cov_1.42661:g76.t1	NC_040035.1 1eu	C. eugenioides	37.50	7,00E-31	89.00	lysosomal beta glucosidase-like
NODE_154_length_576_cov_1.46894:g81.t1	NC_039900.1 2c	C. arabica	27.98	1,00E-16	91.00	ATP-dependent DNA helicase SRS2-like protein At4g25120 isofor
NODE_154_length_576_cov_1.46894:g81.t1	chr0	C. canephora	27.98	5,00E-17	91.00	Putative ATP-dependent DNA helicase pcrA
NODE_154_length_576_cov_1.46894:g81.t1	NC_040035.1 1eu	C. eugenioides	27.98	3,00E-17	91.00	ATP-dependent DNA helicase SRS2-like protein At4g25120
NODE_168_length_551_cov_1.50422:g90.t1	NC_039910.1 7c	C. arabica	36.75	4,00E-14	59.00	ATP-dependent 6-phosphofructokinase 5%2C chloroplastic-like
NODE_168_length_551_cov_1.50422:g90.t1	chr7	C. canephora	36.75	1,00E-14	59.00	6-phosphofructokinase 5%2C chloroplastic
NODE_168_length_551_cov_1.50422:g90.t1	NC_040041.1 7eu	C. eugenioides	36.75	2,00E-14	59.00	ATP-dependent 6-phosphofructokinase 5%2C chloroplastic
NODE_172_length_548_cov_3.2017:g92.t1	NC_039905.1 4e	C. arabica	95.45	1,00E-24	100.00	uncharacterized protein LOC113742131 isoform X1
NODE_172_length_548_cov_3.2017:g92.t1	chr4	C. canephora	95.45	4,00E-25	100.00	unknown protein%3B FUNCTIONS IN
NODE_172_length_548_cov_3.2017:g92.t1	NC_040038.1 4eu	C. eugenioides	95.45	9,00E-25	100.00	uncharacterized protein LOC113768344 isoform X2
NODE_173_length_548_cov_1.32696:g93.t1	NC_039915.1 9e	C. arabica	100.00	2,00E-100	100.00	uncharacterized protein LOC113709986
NODE_173_length_548_cov_1.32696:g93.t1	chr2	C. canephora	53.30	2,00E-46	100.00	Putative DNA helicase PIF1%2C ATP-dependent
NODE_173_length_548_cov_1.32696:g93.t1	NC_040038.1 4eu	C. eugenioides	100.00	5,00E-99	100.00	uncharacterized protein LOC113769142
NODE_174_length_548_cov_1.52654:g94.t1	NC_039910.1 7c	C. arabica	81.87	5,00E-110	100.00	uncharacterized protein LOC113699534

5120 isoform X3

NODE_174_length_548_cov_1.52654:g94.t1	chr10
NODE_174_length_548_cov_1.52654:g94.t1	NW_020862338.3
NODE_175_length_546_cov_1.54371:g95.t1	NC_039900.1 2c
NODE_175_length_546_cov_1.54371:g95.t1	chr2
NODE_175_length_546_cov_1.54371:g95.t1	NC_040036.1 2eu
NODE_176_length_545_cov_2.76282:g96.t1	NC_039900.1 2c
NODE_176_length_545_cov_2.76282:g96.t1	chr2
NODE_176_length_545_cov_2.76282:g96.t1	NC_040035.1 1et
NODE_185_length_535_cov_1.33188:g100.t1	NC_039900.1 2c
NODE_185_length_535_cov_1.33188:g100.t1	chr2
NODE_185_length_535_cov_1.33188:g100.t1	NC_040036.1 2eu
NODE_186_length_534_cov_1.5186:g101.t1	NC_039918.1 110
NODE_186_length_534_cov_1.5186:g101.t1	chr7
NODE_186_length_534_cov_1.5186:g101.t1	NC_040036.1 2eu
NODE_189_length_533_cov_1.01096:g103.t1	NC_039906.1 5e
NODE_189_length_533_cov_1.01096:g103.t1	chr5
NODE_189_length_533_cov_1.01096:g103.t1	NC_040039.1 5et
NODE_192_length_532_cov_1.53407:g106.t1	NW_020849470.3
NODE_192_length_532_cov_1.53407:g106.t1	chr3
NODE_192_length_532_cov_1.53407:g106.t1	NC_040038.1 4et
NODE_204_length_525_cov_1.18973:g116.t1	NC_039918.1 110
NODE_204_length_525_cov_1.18973:g116.t1	chr11
NODE_204_length_525_cov_1.18973:g116.t1	NC_040045.1 11e
NODE_207_length_522_cov_1.56404:g117.t1	NC_039916.1 10e
NODE_207_length_522_cov_1.56404:g117.t1	chr10
NODE_207_length_522_cov_1.56404:g117.t1	NC_040035.1 1et
NODE_211_length_520_cov_1.92325:g121.t1	NC_039898.1 1c
NODE_211_length_520_cov_1.92325:g121.t1	chr1
NODE_211_length_520_cov_1.92325:g121.t1	NC_040035.1 1et
NODE_213_length_518_cov_1.67574:g123.t1	NC_039909.1 6e
NODE_213_length_518_cov_1.67574:g123.t1	chr6
NODE_213_length_518_cov_1.67574:g123.t1	NC_040040.1 6eu
NODE_216_length_517_cov_1.84091:g125.t1	NC_039910.1 7c
NODE_216_length_517_cov_1.84091:g125.t1	NC_040042.1 8eu

	C. canephora	40.00	6,00E-14	35.00
862338.1 scaffold	C. eugenioides	54.95	5,00E-74	100.00
900.1 2c	C. arabica	34.57	3,00E-08	79.00
	C. canephora	34.57	7,00E-09	79.00
036.1 2eu	C. eugenioides	34.57	2,00E-08	79.00
900.1 2c	C. arabica	67.39	7,00E-38	100.00
	C. canephora	49.45	3,00E-21	97.00
035.1 1eu	C. eugenioides	67.39	4,00E-37	100.00
900.1 2c	C. arabica	39.60	9,00E-18	93.00
	C. canephora	39.24	9,00E-18	98.00
036.1 2eu	C. eugenioides	39.60	6,00E-18	93.00
918.1 11c	C. arabica	47.50	1,00E-17	64.00
	C. canephora	42.50	2,00E-16	64.00
036.1 2eu	C. eugenioides	45.57	2,00E-17	63.00
906.1 5e	C. arabica	29.38	7,00E-11	90.00
	C. canephora	29.38	3,00E-11	90.00
039.1 5eu	C. eugenioides	27.93	1,00E-10	92.00
849470.1 scaffold	C. arabica	100.00	2,00E-108	100.00
	C. canephora	58.94	5,00E-58	85.00
038.1 4eu	C. eugenioides	98.30	6,00E-107	100.00
918.1 11c	C. arabica	36.97	3,00E-09	72.00
	C. canephora	41.76	8,00E-09	54.00
045.1 11eu 11eu	C. eugenioides	36.89	6,00E-09	62.00
916.1 10e	C. arabica	58.82	9,00E-58	100.00
	C. canephora	58.82	1,00E-59	100.00
035.1 1eu	C. eugenioides	66.23	3,00E-60	92.00
898.1 1c	C. arabica	44.44	2,00E-07	36.00
	C. canephora	44.44	8,00E-08	36.00
035.1 1eu	C. eugenioides	44.44	1,00E-07	36.00
909.1 6e	C. arabica	42.20	5,00E-23	94.00
	C. canephora	40.37	7,00E-23	94.00
040.1 6eu	C. eugenioides	41.28	4,00E-23	94.00
910.1 7c	C. arabica	79.49	8,00E-15	37.00
042.1 8eu	C. eugenioides	76.92	1,00E-12	37.00

Putative Probable LRR receptor-like serine/threonine-protein kinase
uncharacterized protein LOC113756011
LOW QUALITY PROTEIN: CLP protease regulatory subunit CLPX1%20
ATP-dependent Clp protease ATP-binding subunit ClpX
CLP protease regulatory subunit CLPX1%2C mitochondrial
uncharacterized protein LOC113723844
Putative Pol-polyprotein
uncharacterized protein K02A2.6-like
3-methyl-2-oxobutanoate hydroxymethyltransferase 2%2C mitocho
3-methyl-2-oxobutanoate hydroxymethyltransferase
3-methyl-2-oxobutanoate hydroxymethyltransferase 2%2C mitocho
probable aquaporin NIP-type
Probable aquaporin NIP-type
aquaporin NIP1-1-like
aconitate hydratase%2C cytoplasmic
Aconitate hydratase 2%2C mitochondrial
putative aconitate hydratase%2C cytoplasmic
uncharacterized protein LOC113720575
Hypothetical protein
uncharacterized protein LOC113769142
LOW QUALITY PROTEIN: inorganic phosphate transporter 2-1%2C c
Inorganic phosphate transporter 2-1%2C chloroplastic
inorganic phosphate transporter 2-1%2C chloroplastic
protein translocase subunit SECA2%2C chloroplastic-like
Protein translocase subunit SECA2%2C chloroplastic
protein translocase subunit SecA%2C chloroplastic
phosphomethylpyrimidine synthase%2C chloroplastic isoform X3
Phosphomethylpyrimidine synthase%2C chloroplastic
phosphomethylpyrimidine synthase%2C chloroplastic isoform X3
iron-sulfur assembly protein IscA-like 2%2C mitochondrial isoform >
Iron-sulfur assembly protein IscA-like 2%2C mitochondrial
iron-sulfur assembly protein IscA-like 2%2C mitochondrial
uncharacterized protein LOC113699907
uncharacterized protein LOC113780732

se At4g08850

C mitochondrial-like

ondrial-like isoform X2

ondrial-like isoform X2

chloroplastic-like

X1

NODE_217_length_515_cov_1.00457:g126.t1	NC_039900.1 2c	C. arabica	37.97	1,00E-31	99.00	probable tRNA N6-adenosine threonylcarbamoyltransferase%2C n
NODE_217_length_515_cov_1.00457:g126.t1	chr2	C. canephora	37.97	3,00E-32	99.00	Putative Probable tRNA threonylcarbamoyladenosine biosynthesis
NODE_217_length_515_cov_1.00457:g126.t1	NC_040036.1 2eu	C. eugenioides	37.97	7,00E-32	99.00	probable tRNA N6-adenosine threonylcarbamoyltransferase%2C n
NODE_222_length_512_cov_3.11034:g130.t1	NC_039909.1 6e	C. arabica	84.62	1,00E-95	99.00	uncharacterized protein LOC113696749
NODE_222_length_512_cov_3.11034:g130.t1	chr7	C. canephora	64.71	9,00E-08	20.00	Putative Late blight resistance protein R1
NODE_222_length_512_cov_3.11034:g130.t1	NW_020864084.1 scaffold	C. eugenioides	84.62	3,00E-95	99.00	uncharacterized protein LOC113758021
NODE_228_length_508_cov_1.34339:g133.t1	chr2	C. canephora	34.57	5,00E-08	98.00	Putative Epimerase family protein slr1223
NODE_228_length_508_cov_1.34339:g133.t1	NC_040036.1 2eu	C. eugenioides	34.57	1,00E-07	98.00	epimerase family protein SDR39U1 homolog%2C chloroplastic isof
NODE_233_length_505_cov_1.89019:g135.t1	NC_039902.1 3c	C. arabica	42.01	4,00E-33	98.00	probable uridine nucleosidase 2 isoform X1
NODE_233_length_505_cov_1.89019:g135.t1	chr3	C. canephora	42.01	2,00E-33	98.00	Probable uridine nucleosidase 2
NODE_233_length_505_cov_1.89019:g135.t1	NC_040037.1 3eu	C. eugenioides	42.60	1,00E-33	98.00	probable uridine nucleosidase 2
NODE_235_length_503_cov_1.07981:g137.t1	NC_039900.1 2c	C. arabica	55.38	1,00E-38	77.00	glutamate synthase [NADH]%2C amyloplastic-like isoform X2
NODE_235_length_503_cov_1.07981:g137.t1	chr2	C. canephora	55.38	7,00E-39	77.00	Glutamate synthase [NADH]%2C amyloplastic
NODE_235_length_503_cov_1.07981:g137.t1	NC_040036.1 2eu	C. eugenioides	55.38	9,00E-39	77.00	glutamate synthase [NADH]%2C amyloplastic isoform X2
NODE_239_length_501_cov_1.08726:g140.t1	NC_039903.1 3e	C. arabica	54.39	2,00E-14	41.00	ribulose-phosphate 3-epimerase%2C cytoplasmic isoform-like
NODE_239_length_501_cov_1.08726:g140.t1	chr4	C. canephora	45.59	6,00E-15	49.00	Ribulose-phosphate 3-epimerase%2C chloroplastic (Fragment)
NODE_239_length_501_cov_1.08726:g140.t1	NC_040037.1 3eu	C. eugenioides	54.39	9,00E-15	41.00	ribulose-phosphate 3-epimerase%2C cytoplasmic isoform-like
NODE_241_length_499_cov_1.38863:g142.t1	NC_039901.1 2e	C. arabica	35.35	1,00E-08	59.00	D-xylose-proton symporter-like 2
NODE_241_length_499_cov_1.38863:g142.t1	chr2	C. canephora	35.35	4,00E-09	59.00	D-xylose-proton symporter-like 2
NODE_241_length_499_cov_1.38863:g142.t1	NC_040036.1 2eu	C. eugenioides	35.35	6,00E-09	59.00	D-xylose-proton symporter-like 2 isoform X1
NODE_244_length_496_cov_1.04535:g145.t1	chr3	C. canephora	29.55	5,00E-06	77.00	Pyruvate%2C phosphate dikinase%2C chloroplastic
NODE_244_length_496_cov_1.04535:g145.t1	NC_040037.1 3eu	C. eugenioides	29.55	7,00E-06	77.00	pyruvate%2C phosphate dikinase%2C chloroplastic
NODE_248_length_494_cov_1.41487:g149.t1	NC_039905.1 4e	C. arabica	36.73	4,00E-12	67.00	isochorismate synthase%2C chloroplastic-like
NODE_248_length_494_cov_1.41487:g149.t1	chr4	C. canephora	36.73	2,00E-12	67.00	Isochorismate synthase%2C chloroplastic
NODE_248_length_494_cov_1.41487:g149.t1	NC_040038.1 4eu	C. eugenioides	36.73	3,00E-12	67.00	isochorismate synthase%2C chloroplastic
NODE_250_length_493_cov_1.4375:g151.t1	NC_039917.1 10c	C. arabica	98.16	2,00E-101	100.00	putative receptor-like protein kinase At3g47110 isoform X1
NODE_250_length_493_cov_1.4375:g151.t1	chr10	C. canephora	82.21	1,00E-83	100.00	Putative Probable LRR receptor-like serine/threonine-protein kina
NODE_250_length_493_cov_1.4375:g151.t1	NC_040044.1 10eu	C. eugenioides	86.50	9,00E-90	100.00	putative receptor-like protein kinase At3g47110
NODE_254_length_489_cov_1.29369:g153.t1	NC_039909.1 6e	C. arabica	39.62	1,00E-07	55.00	adenosine kinase 2
NODE_254_length_489_cov_1.29369:g153.t1	chr6	C. canephora	39.62	4,00E-08	55.00	Adenosine kinase 2
NODE_254_length_489_cov_1.29369:g153.t1	NC_040040.1 6eu	C. eugenioides	39.62	7,00E-08	55.00	adenosine kinase 2
NODE_255_length_488_cov_1.78589:g154.t1	NC_039901.1 2e	C. arabica	27.73	5,00E-08	72.00	uncharacterized protein LOC113732124
NODE_255_length_488_cov_1.78589:g154.t1	chr6	C. canephora	27.78	2,00E-10	77.00	Putative Phosphoglycerate kinase%2C cytosolic
NODE_255_length_488_cov_1.78589:g154.t1	NC_040036.1 2eu	C. eugenioides	27.73	3,00E-08	72.00	uncharacterized protein LOC113762363 isoform X1

mitochondrial

is protein osgepl1

mitochondrial

oform X1

ase At3g47570

NODE_259_length_486_cov_1.25917:g157.t1 NODE 259 length 486 cov 1.25917:g157.t1 NODE_264_length_486_cov_1.57702:g160.t1 NODE_264_length_486_cov_1.57702:g160.t1 NODE_264_length_486_cov_1.57702:g160.t1 NODE 268 length 484 cov 1.33907:g162.t1 NODE 268 length 484 cov 1.33907:g162.t1 NODE_268_length_484_cov_1.33907:g162.t1 NODE_277_length_477_cov_1.4925:g168.t1 NODE_277_length_477_cov_1.4925:g168.t1 NODE_277_length_477_cov_1.4925:g168.t1 NODE_280_length_477_cov_1.7025:g170.t1 NODE_280_length_477_cov_1.7025:g170.t1 NODE_280_length_477_cov_1.7025:g170.t1 NODE_284_length_474_cov_0.88665:g172.t1 NODE_284_length_474_cov_0.88665:g172.t1 NODE_284_length_474_cov_0.88665:g172.t1 NODE_287_length_472_cov_2.37975:g174.t1 NODE_287_length_472_cov_2.37975:g174.t1 NODE_295_length_468_cov_1.86189:g178.t1 NODE_295_length_468_cov_1.86189:g178.t1 NODE_295_length_468_cov_1.86189:g178.t1 NODE_297_length_468_cov_1.86701:g180.t1 NODE_297_length_468_cov_1.86701:g180.t1 NODE_302_length_466_cov_1.98458:g185.t1 NODE_302_length_466_cov_1.98458:g185.t1 NODE_302_length_466_cov_1.98458:g185.t1 NODE_303_length_465_cov_1.1366:g186.t1 NODE_303_length_465_cov_1.1366:g186.t1 NODE_303_length_465_cov_1.1366:g186.t1 NODE_306_length_463_cov_1.04922:g189.t1 NODE_306_length_463_cov_1.04922:g189.t1 NODE_306_length_463_cov_1.04922:g189.t1 NODE_317_length_458_cov_1.74541:g195.t1

NC_039900.1 2c	C. arabica	37.40	3,00E-06	89.00
chr0	C. canephora	37.40	8,00E-07	89.00
NC_039908.1 6c	C. arabica	37.78	3,00E-24	83.00
chr6	C. canephora	36.96	1,00E-23	85.00
NC_040040.1 6eu	C. eugenioides	36.96	3,00E-23	85.00
NC_039919.1 11e	C. arabica	72.22	2,00E-17	36.00
chr11	C. canephora	72.22	7,00E-18	36.00
NC_040045.1 11eu 11eu	C. eugenioides	72.22	1,00E-17	36.00
NC_039913.1 8c	C. arabica	40.32	3,00E-09	40.00
chr8	C. canephora	40.32	9,00E-10	40.00
NC_040042.1 8eu	C. eugenioides	40.32	2,00E-09	40.00
NC_039919.1 11e	C. arabica	56.52	1,00E-44	99.00
chr11	C. canephora	55.80	1,00E-44	99.00
NC_040045.1 11eu 11eu	C. eugenioides	55.80	2,00E-44	99.00
NC_039913.1 8c	C. arabica	74.19	7,00E-66	100.00
chr7	C. canephora	74.19	2,00E-66	100.00
NC_040036.1 2eu	C. eugenioides	74.19	4,00E-66	100.00
NC_008535.1 chloroplast	C. arabica	72.80	7,00E-61	91.00
NC_040041.1 7eu	C. eugenioides	57.26	3,00E-48	91.00
NC_039919.1 11e	C. arabica	31.37	5,00E-10	94.00
chr7	C. canephora	32.03	2,00E-12	94.00
NC_040045.1 11eu 11eu	C. eugenioides	32.03	5,00E-12	94.00
NC_039919.1 11e	C. arabica	63.79	3,00E-18	75.00
NC_040038.1 4eu	C. eugenioides	62.07	2,00E-17	75.00
NC_039903.1 3e	C. arabica	37.41	2,00E-27	95.00
chr5	C. canephora	36.73	2,00E-27	95.00
NC_040039.1 5eu	C. eugenioides	37.41	1,00E-27	95.00
NC_039909.1 6e	C. arabica	33.98	2,00E-14	97.00
chr6	C. canephora	33.98	7,00E-15	97.00
NC_040040.1 6eu	C. eugenioides	33.98	9,00E-15	97.00
NC_039906.1 5e	C. arabica	41.58	3,00E-20	100.00
chr2	C. canephora	40.74	9,00E-17	100.00
NC_040039.1 5eu	C. eugenioides	41.58	1,00E-20	100.00
NC_039911.1 7e	C. arabica	38.75	2,00E-12	57.00

NADPH-dependent aldehyde reductase 1%2C chloroplastic-like
Glucose and ribitol dehydrogenase homolog 1
putative elongation factor TypA-like SVR3%2C chloroplastic isoform
GTP-binding protein TypA/BipA homolog
putative elongation factor TypA-like SVR3%2C chloroplastic
3-oxoacyl-[acyl-carrier-protein] reductase 4
3-oxoacyl-[acyl-carrier-protein] reductase%2C chloroplastic
3-oxoacyl-[acyl-carrier-protein] reductase 4
histidine kinase 5-like
Histidine kinase 5
histidine kinase 5
glutaminetRNA ligase-like
GlutaminetRNA ligase
glutaminetRNA ligase-like
heat shock 70 kDa protein%2C mitochondrial-like
Heat shock 70 kDa protein%2C mitochondrial
heat shock 70 kDa protein%2C mitochondrial-like
ribosomal protein S12
uncharacterized protein LOC113777733
UDP-glucose 6-dehydrogenase 5-like
UDP-glucose 6-dehydrogenase
LOW QUALITY PROTEIN: UDP-glucose 6-dehydrogenase 3-like
uncharacterized protein LOC113718566
uncharacterized protein LOC113767831
succinate-semialdehyde dehydrogenase%2C mitochondrial-like
Succinate-semialdehyde dehydrogenase%2C mitochondrial
succinate-semialdehyde dehydrogenase%2C mitochondrial
L-2-hydroxyglutarate dehydrogenase%2C mitochondrial-like
Putative L-2-hydroxyglutarate dehydrogenase%2C mitochondrial
L-2-hydroxyglutarate dehydrogenase%2C mitochondrial isoform X3
dihydrolipoyllysine-residue succinyltransferase component of 2-oxo
Dihydrolipoyllysine-residue acetyltransferase component 1 of pyruv
dihydrolipoyllysine-residue succinyltransferase component of 2-oxo
tRNA threonylcarbamoyladenosine dehydratase-like isoform X2

rm X3

xoglutarate dehydrogenase complex 2%2C mitochondrial-like uvate dehydrogenase complex%2C mitochondrial xoglutarate dehydrogenase complex 2%2C mitochondrial

NODE_317_length_458_cov_1.74541:g195.t1
NODE_317_length_458_cov_1.74541:g195.t1
NODE_328_length_452_cov_0.978667:g203.t1
NODE_328_length_452_cov_0.978667:g203.t1
NODE_334_length_449_cov_0.983871:g207.t1
NODE_334_length_449_cov_0.983871:g207.t1
NODE_334_length_449_cov_0.983871:g207.t1
NODE_349_length_443_cov_0.808743:g218.t1
NODE_349_length_443_cov_0.808743:g218.t1
NODE_349_length_443_cov_0.808743:g218.t1
NODE_351_length_443_cov_1.59836:g219.t1
NODE_351_length_443_cov_1.59836:g219.t1
NODE_351_length_443_cov_1.59836:g219.t1
NODE_355_length_442_cov_1.27945:g221.t1
NODE_355_length_442_cov_1.27945:g221.t1
NODE_355_length_442_cov_1.27945:g221.t1
NODE_361_length_440_cov_2.02479:g225.t1
NODE_361_length_440_cov_2.02479:g225.t1
NODE_361_length_440_cov_2.02479:g225.t1
NODE_364_length_439_cov_1.62707:g228.t1
NODE_364_length_439_cov_1.62707:g228.t1
NODE_364_length_439_cov_1.62707:g228.t1
NODE_365_length_438_cov_1.55956:g229.t1
NODE_365_length_438_cov_1.55956:g229.t1
NODE_365_length_438_cov_1.55956:g229.t1
NODE_384_length_429_cov_1.80682:g242.t1
NODE_384_length_429_cov_1.80682:g242.t1
NODE_384_length_429_cov_1.80682:g242.t1
NODE_387_length_429_cov_2.01989:g245.t1
NODE_387_length_429_cov_2.01989:g245.t1
NODE_387_length_429_cov_2.01989:g245.t1
NODE_388_length_428_cov_1.22507:g246.t1
NODE_388_length_428_cov_1.22507:g246.t1
NODE_388_length_428_cov_1.22507:g246.t1

chr7	C. canephora	40.00	2,00E-12	57.00	Putative l
NC_040041.1 7eu	C. eugenioides	38.75	1,00E-12	57.00	tRNA thre
chr4	C. canephora	47.27	2,00E-07	85.00	30S ribos
NC_040038.1 4eu	C. eugenioides	47.27	3,00E-08	85.00	golgin sut
NC_039902.1 3c	C. arabica	48.35	1,00E-24	73.00	cryptochr
chr3	C. canephora	48.35	5,00E-25	73.00	Cryptoch
NC_040037.1 3eu	C. eugenioides	48.35	9,00E-25	73.00	cryptochr
NC_039911.1 7e	C. arabica	29.68	6,00E-13	98.00	xanthine
chr7	C. canephora	29.45	2,00E-12	93.00	Xanthine
NC_040041.1 7eu	C. eugenioides	29.68	3,00E-13	98.00	xanthine
NC_039901.1 2e	C. arabica	31.91	2,00E-14	94.00	4-hydroxy
chr0	C. canephora	31.91	7,00E-15	94.00	Dihydrodi
NC_040036.1 2eu	C. eugenioides	31.91	1,00E-14	94.00	4-hydroxy
NC_039919.1 11e	C. arabica	35.54	1,00E-10	98.00	3-oxoacyl
chr11	C. canephora	35.54	4,00E-11	98.00	3-oxoacyl
NC_040045.1 11eu 11eu	C. eugenioides	35.54	9,00E-11	98.00	3-oxoacyl
NC_039915.1 9e	C. arabica	55.03	7,00E-50	99.00	leucinet
chr9	C. canephora	54.36	6,00E-50	99.00	Leucine1
NC_040043.1 9eu	C. eugenioides	55.03	4,00E-50	99.00	leucinet
NC_039905.1 4e	C. arabica	39.81	8,00E-20	92.00	tropinone
chr4	C. canephora	39.81	2,00E-20	92.00	Tropinone
NC_040038.1 4eu	C. eugenioides	39.81	4,00E-20	92.00	tropinone
NC_039898.1 1c	C. arabica	33.33	9,00E-13	93.00	sorbitol d
chr0	C. canephora	33.33	6,00E-14	93.00	L-idonate
NC_040035.1 1eu	C. eugenioides	34.04	2,00E-13	93.00	sorbitol d
NC_039918.1 11c	C. arabica	36.59	3,00E-24	100.00	D-galactu
chr4	C. canephora	37.89	8,00E-25	100.00	Putative F
NC_040045.1 11eu 11eu	C. eugenioides	37.80	2,00E-24	100.00	D-galactu
NC_039916.1 10e	C. arabica	37.23	9,00E-12	59.00	RNA pseu
chr10	C. canephora	37.23	5,00E-12	59.00	RNA pseu
NC_040044.1 10eu	C. eugenioides	35.85	6,00E-13	68.00	RNA pseu
NC_039904.1 4c	C. arabica	35.29	2,00E-12	100.00	DNA gyra
chr6	C. canephora	35.29	1,00E-12	100.00	DNA gyra
NC_040040.1 6eu	C. eugenioides	35.29	1,00E-12	100.00	DNA gyra

Putative Uncharacterized protein YHR003C
tRNA threonylcarbamoyladenosine dehydratase
30S ribosomal protein S15
golgin subfamily A member 2
cryptochrome-1 isoform X1
Cryptochrome-2
cryptochrome-1
xanthine dehydrogenase 1-like isoform X1
Xanthine dehydrogenase 1
xanthine dehydrogenase 1-like isoform X1
4-hydroxy-tetrahydrodipicolinate synthase%2C chloroplastic-like
Dihydrodipicolinate synthase%2C chloroplastic
4-hydroxy-tetrahydrodipicolinate synthase%2C chloroplastic-like
3-oxoacyl-[acyl-carrier-protein] reductase 4
3-oxoacyl-[acyl-carrier-protein] reductase%2C chloroplastic
3-oxoacyl-[acyl-carrier-protein] reductase 4
leucinetRNA ligase%2C chloroplastic/mitochondrial-like
LeucinetRNA ligase
leucinetRNA ligase%2C chloroplastic/mitochondrial
tropinone reductase homolog At5g06060-like
Tropinone reductase homolog At1g07440
tropinone reductase homolog At5g06060-like
sorbitol dehydrogenase-like
L-idonate 5-dehydrogenase
sorbitol dehydrogenase-like
D-galacturonate reductase-like
Putative Probable NAD(P)H-dependent oxidoreductase 1
D-galacturonate reductase-like
RNA pseudouridine synthase 2%2C chloroplastic isoform X4
RNA pseudourine synthase 2%2C chloroplastic
RNA pseudouridine synthase 2%2C chloroplastic isoform X2
DNA gyrase subunit B%2C chloroplastic/mitochondrial-like
DNA gyrase subunit B%2C chloroplastic/mitochondrial
DNA gyrase subunit B%2C chloroplastic/mitochondrial-like

₂%2C chloroplastic-like

NODE_398_length_424_cov_1.68876:g251.t1	NC_039907.1 5c
NODE_398_length_424_cov_1.68876:g251.t1	chr5
NODE_398_length_424_cov_1.68876:g251.t1	NC_040039.1 5eu
NODE_401_length_424_cov_1.18732:g253.t1	NC_039901.1 2e
NODE_401_length_424_cov_1.18732:g253.t1	chr2
NODE_401_length_424_cov_1.18732:g253.t1	NC_040036.1 2eu
NODE_411_length_421_cov_0.860465:g259.t1	NC_039916.1 10e
NODE_411_length_421_cov_0.860465:g259.t1	chr10
NODE_411_length_421_cov_0.860465:g259.t1	NC_040044.1 10eu
NODE_415_length_420_cov_1.69679:g261.t1	NC_039906.1 5e
NODE_415_length_420_cov_1.69679:g261.t1	chr5
NODE_415_length_420_cov_1.69679:g261.t1	NC_040039.1 5eu
NODE_417_length_420_cov_1.86297:g263.t1	NC_039916.1 10e
NODE_417_length_420_cov_1.86297:g263.t1	chr10
NODE_417_length_420_cov_1.86297:g263.t1	NC_040044.1 10eu
NODE_425_length_417_cov_0.911765:g267.t1	NC_039902.1 3c
NODE_425_length_417_cov_0.911765:g267.t1	chr3
NODE_425_length_417_cov_0.911765:g267.t1	NC_040037.1 3eu
NODE_427_length_416_cov_1.41888:g268.t1	NC_039898.1 1c
NODE_427_length_416_cov_1.41888:g268.t1	chr1
NODE_427_length_416_cov_1.41888:g268.t1	NC_040035.1 1eu
NODE_433_length_415_cov_1.19822:g273.t1	NC_039899.1 1e
NODE_433_length_415_cov_1.19822:g273.t1	chr1
NODE_433_length_415_cov_1.19822:g273.t1	NW_020862423.1 scaffold
NODE_437_length_415_cov_2.02367:g275.t1	NC_039918.1 11c
NODE_437_length_415_cov_2.02367:g275.t1	chr11
NODE_437_length_415_cov_2.02367:g275.t1	NC_040045.1 11eu 11eu
NODE_438_length_414_cov_1.75668:g276.t1	NC_039913.1 8c
NODE_438_length_414_cov_1.75668:g276.t1	chr8
NODE_438_length_414_cov_1.75668:g276.t1	NC_040042.1 8eu
NODE_440_length_414_cov_2.21365:g278.t1	NC_039900.1 2c
NODE_440_length_414_cov_2.21365:g278.t2	NC_039900.1 2c
NODE_440_length_414_cov_2.21365:g278.t1	chr2
NODE_440_length_414_cov_2.21365:g278.t2	chr2

С	C. arabica	40.43	2,00E-11	92.00
	C. canephora	40.43	1,00E-11	92.00
eu	C. eugenioides	40.43	9,00E-12	92.00
e	C. arabica	31.53	6,00E-08	90.00
	C. canephora	31.53	6,00E-08	90.00
eu	C. eugenioides	31.53	4,00E-08	90.00
0e	C. arabica	41.56	7,00E-14	98.00
	C. canephora	41.56	2,00E-14	98.00
0eu	C. eugenioides	41.56	3,00E-14	98.00
e	C. arabica	46.85	2,00E-32	79.00
	C. canephora	46.85	2,00E-32	79.00
eu	C. eugenioides	46.85	2,00E-32	79.00
0e	C. arabica	56.12	6,00E-35	98.00
	C. canephora	56.12	2,00E-35	98.00
0eu	C. eugenioides	56.12	3,00E-35	98.00
С	C. arabica	66.67	1,00E-47	100.0
	C. canephora	66.67	3,00E-48	100.0
eu	C. eugenioides	66.67	9,00E-50	100.0
С	C. arabica	35.76	6,00E-22	100.0
	C. canephora	35.76	2,00E-22	100.0
eu	C. eugenioides	35.76	4,00E-22	100.0
е	C. arabica	69.23	1,00E-64	100.0
	C. canephora	69.23	4,00E-65	100.0
3.1 scaffold	C. eugenioides	69.23	3,00E-66	100.0
1c	C. arabica	51.72	4,00E-25	96.00
	C. canephora	51.72	1,00E-25	96.00
1eu 11eu	C. eugenioides	51.72	2,00E-25	96.00
с	C. arabica	39.44	8,00E-24	98.00
	C. canephora	36.60	2,00E-20	98.00
eu	C. eugenioides	39.44	4,00E-24	98.00
с	C. arabica	55.66	6,00E-29	98.00
с	C. arabica	59.68	1,00E-39	99.00
	C. canephora	39.74	3,00E-11	82.00
	C. canephora	41.67	1,00E-16	85.00

)	uncharacterized protein LOC113690691 isoform X1
)	Putative Ribosomal RNA small subunit methyltransferase B
)	uncharacterized protein LOC113772441 isoform X1
)	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase%2C chloro
)	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase%2C chloro
)	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase%2C chloro
)	fructose-1%2C6-bisphosphatase%2C cytosolic-like
)	Fructose-1%2C6-bisphosphatase%2C cytosolic
)	fructose-1%2C6-bisphosphatase%2C cytosolic isoform X1
)	aspartate carbamoyltransferase 1%2C chloroplastic-like isoform X2
)	Aspartate carbamoyltransferase 1%2C chloroplastic
)	aspartate carbamoyltransferase 1%2C chloroplastic
)	uncharacterized protein LOC113712777
)	Putative GTPase HflX
)	uncharacterized protein LOC113749927
00	biotin synthase%2C mitochondrial-like
00	Biotin synthase
00	biotin synthase%2C mitochondrial-like
00	LOW QUALITY PROTEIN: 4-hydroxy-3-methylbut-2-en-1-yl diphospha
0	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase%2C chlorop
0	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (ferredoxin)
0	asparagine synthetase [glutamine-hydrolyzing]
0	Asparagine synthetase [glutamine-hydrolyzing]
0	asparagine synthetase [glutamine-hydrolyzing]-like
)	glutamate decarboxylase-like
)	Glutamate decarboxylase
)	glutamate decarboxylase-like
)	formyltetrahydrofolate deformylase 1%2C mitochondrial-like isoform
)	Putative Formyltetrahydrofolate deformylase
)	formyltetrahydrofolate deformylase 1%2C mitochondrial isoform X2
)	uncharacterized protein LOC113723907
)	uncharacterized protein LOC113723907
)	Putative Pol-polyprotein
)	Putative Pol-polyprotein

oplastic oplastic oplastic

nate synthase (ferredoxin)%2C chloroplastic-like plastic)%2C chloroplastic

rm X2

NODE_440_length_414_cov_2.21365:g278.t1 NODE_440_length_414_cov_2.21365:g278.t2 NODE_446_length_412_cov_1.65075:g282.t1 NODE_446_length_412_cov_1.65075:g282.t1 NODE_446_length_412_cov_1.65075:g282.t1 NODE_449_length_410_cov_1.32733:g284.t1 NODE_449_length_410_cov_1.32733:g284.t1 NODE_449_length_410_cov_1.32733:g284.t1 NODE_456_length_409_cov_1.47289:g289.t1 NODE_456_length_409_cov_1.47289:g289.t1 NODE_456_length_409_cov_1.47289:g289.t1 NODE_466_length_406_cov_2.23708:g294.t1 NODE_466_length_406_cov_2.23708:g294.t1 NODE_466_length_406_cov_2.23708:g294.t1 NODE_470_length_405_cov_1.41463:g296.t1 NODE_470_length_405_cov_1.41463:g296.t1 NODE_470_length_405_cov_1.41463:g296.t1 NODE_477_length_403_cov_2.00613:g300.t1 NODE_477_length_403_cov_2.00613:g300.t1 NODE_485_length_401_cov_0.895062:g306.t1 NODE_485_length_401_cov_0.895062:g306.t1 NODE_485_length_401_cov_0.895062:g306.t1 NODE_487_length_401_cov_1.3642:g308.t1 NODE_487_length_401_cov_1.3642:g308.t1 NODE_487_length_401_cov_1.3642:g308.t1 NODE_490_length_400_cov_1.36533:g309.t1 NODE_490_length_400_cov_1.36533:g309.t1 NODE_492_length_400_cov_1.50774:g311.t1 NODE_492_length_400_cov_1.50774:g311.t1 NODE_492_length_400_cov_1.50774:g311.t1 NODE_493_length_400_cov_1.59443:g312.t1 NODE_493_length_400_cov_1.59443:g312.t1 NODE_493_length_400_cov_1.59443:g312.t1 NODE_500_length_398_cov_1.14019:g318.t1

NC_040037.1 3eu	C. eugenioides	50.41	9,00E-27	98.00
NC_040036.1 2eu	C. eugenioides	53.24	9,00E-37	99.00
NC_039906.1 5e	C. arabica	35.66	5,00E-14	93.00
chr5	C. canephora	34.88	2,00E-14	93.00
NC_040039.1 5eu	C. eugenioides	34.88	7,00E-14	93.00
NC_039914.1 9c	C. arabica	37.74	5,00E-11	100.0
chr9	C. canephora	37.74	1,00E-11	100.0
NC_040043.1 9eu	C. eugenioides	37.74	3,00E-11	100.0
NC_039900.1 2c	C. arabica	44.19	1,00E-26	94.00
chr2	C. canephora	44.19	4,00E-27	94.00
NC_040036.1 2eu	C. eugenioides	44.19	6,00E-27	94.00
NC_039899.1 1e	C. arabica	31.18	7,00E-07	69.00
chr1	C. canephora	31.18	3,00E-07	69.00
NC_040035.1 1eu	C. eugenioides	31.18	4,00E-07	69.00
NC_008535.1 chloroplast	C. arabica	50.00	2,00E-20	74.00
chr7	C. canephora	37.50	2,00E-06	45.00
NC_040041.1 7eu	C. eugenioides	39.06	7,00E-07	45.00
NC_039912.1 8e	C. arabica	97.74	1,00E-84	100.0
NW_020864630.1 scaffold	C. eugenioides	91.67	6,00E-85	99.00
NC_039905.1 4e	C. arabica	39.85	2,00E-20	100.0
chr2	C. canephora	39.85	3,00E-21	100.0
NC_040038.1 4eu	C. eugenioides	39.85	9,00E-21	100.0
NC_039917.1 10c	C. arabica	57.14	9,00E-08	47.00
chr10	C. canephora	48.78	1,00E-07	55.00
NC_040044.1 10eu	C. eugenioides	57.14	5,00E-08	47.00
NC_039902.1 3c	C. arabica	78.79	8,00E-50	100.0
NC_040039.1 5eu	C. eugenioides	48.48	3,00E-24	100.0
NC_039908.1 6c	C. arabica	34.62	1,00E-08	80.00
chr6	C. canephora	34.62	5,00E-09	80.00
NC_040040.1 6eu	C. eugenioides	34.91	5,00E-09	81.00
NC_039919.1 11e	C. arabica	38.40	9,00E-19	93.00
chr11	C. canephora	38.40	7,00E-19	93.00
NC_040045.1 11eu 11eu	C. eugenioides	38.40	5,00E-19	93.00
NC_039898.1 1c	C. arabica	46.40	2,00E-34	94.00

	uncharacterized protein LOC113766031
	uncharacterized protein LOC113759798
	uncharacterized protein LOC113743442
	Putative Release factor glutamine methyltransferase
	uncharacterized protein LOC113770504
0	protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic-like
0	Protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic
0	protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic
	dicarboxylate transporter 2.1%2C chloroplastic-like
	2-oxoglutarate/malate translocator%2C chloroplastic
	dicarboxylate transporter 2.1%2C chloroplastic
	phosphatidylinositol N-acetylglucosaminyltransferase subunit A-like
	Phosphatidylinositol N-acetylglucosaminyltransferase subunit A
	phosphatidylinositol N-acetylglucosaminyltransferase subunit A iso
	RNA polymerase beta" subunit
	DNA-directed RNA polymerase II subunit RPB1
	DNA-directed RNA polymerase II subunit 1
0	uncharacterized protein LOC113703843
	uncharacterized protein LOC113758839
0	pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1-like
0	Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DH
0	pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1-like
	thylakoidal processing peptidase 1%2C chloroplastic-like
	Thylakoidal processing peptidase 1%2C chloroplastic
	thylakoidal processing peptidase 1%2C chloroplastic-like
0	MDIS1-interacting receptor like kinase 2-like
0	LRR receptor-like serine/threonine-protein kinase FLS2
	protein DETOXIFICATION 16-like isoform X2
	Putative MATE efflux family protein 7
	protein DETOXIFICATION 16-like isoform X2
	pyruvate kinase%2C cytosolic isozyme-like
	Pyruvate kinase%2C cytosolic isozyme
	pyruvate kinase%2C cytosolic isozyme
	ribosome-recycling factor%2C chloroplastic-like isoform X2

e isoform X1

oform X1

HX16 isoform X2

NODE_500_length_398_cov_1.14019:g318.t1
NODE_500_length_398_cov_1.14019:g318.t1
NODE_502_length_398_cov_2.23676:g319.t1
NODE_502_length_398_cov_2.23676:g319.t1
NODE_502_length_398_cov_2.23676:g319.t1
NODE_505_length_397_cov_1.57812:g321.t1
NODE_505_length_397_cov_1.57812:g321.t1
NODE_505_length_397_cov_1.57812:g321.t1
NODE_509_length_397_cov_1.06563:g324.t1
NODE_509_length_397_cov_1.06563:g324.t1
NODE_511_length_396_cov_1.83386:g325.t1
NODE_511_length_396_cov_1.83386:g325.t1
NODE_516_length_395_cov_1.79874:g330.t1
NODE_516_length_395_cov_1.79874:g330.t1
NODE_516_length_395_cov_1.79874:g330.t1
NODE_519_length_395_cov_1.59434:g332.t1
NODE_521_length_394_cov_1.39117:g334.t1
NODE_521_length_394_cov_1.39117:g334.t1
NODE_521_length_394_cov_1.39117:g334.t1
NODE_525_length_393_cov_2.93038:g338.t1
NODE_525_length_393_cov_2.93038:g338.t1
NODE_525_length_393_cov_2.93038:g338.t1
NODE_530_length_391_cov_1.28662:g343.t1
NODE_530_length_391_cov_1.28662:g343.t1
NODE_530_length_391_cov_1.28662:g343.t1
NODE_531_length_390_cov_1.18211:g344.t1
NODE_531_length_390_cov_1.18211:g344.t1
NODE_531_length_390_cov_1.18211:g344.t1
NODE_532_length_390_cov_1.48243:g345.t1
NODE_532_length_390_cov_1.48243:g345.t1
NODE_532_length_390_cov_1.48243:g345.t1
NODE_546_length_386_cov_1.65696:g358.t1
NODE_546_length_386_cov_1.65696:g358.t1
NODE_546_length_386_cov_1.65696:g358.t1

chr1	C. canephora	46.40	2,00E-34	94.00
NC_040035.1 1eu	C. eugenioides	46.40	5,00E-35	94.00
NC_039909.1 6e	C. arabica	37.59	4,00E-22	98.00
chr6	C. canephora	37.59	3,00E-22	98.00
NC_040040.1 6eu	C. eugenioides	37.59	5,00E-22	98.00
NC_039909.1 6e	C. arabica	45.97	1,00E-34	94.00
chr6	C. canephora	45.97	4,00E-35	94.00
NC_040040.1 6eu	C. eugenioides	45.97	7,00E-35	94.00
NC_039911.1 7e	C. arabica	83.33	1,00E-50	100.00
NC_040035.1 1eu	C. eugenioides	90.00	2,00E-53	100.00
NC_039909.1 6e	C. arabica	92.17	4,00E-77	100.00
NC_040041.1 7eu	C. eugenioides	93.04	1,00E-73	100.00
NC_039914.1 9c	C. arabica	50.00	3,00E-07	27.00
chr9	C. canephora	52.50	8,00E-09	30.00
NC_040043.1 9eu	C. eugenioides	47.22	9,00E-07	27.00
NC_008535.1 chloroplast	C. arabica	42.11	9,00E-33	100.00
NC_039913.1 8c	C. arabica	48.96	8,00E-18	90.00
chr8	C. canephora	48.96	2,00E-18	90.00
NC_040042.1 8eu	C. eugenioides	48.96	5,00E-18	90.00
NC_039907.1 5c	C. arabica	38.71	5,00E-07	62.00
chr5	C. canephora	38.71	1,00E-07	62.00
NC_040039.1 5eu	C. eugenioides	32.26	3,00E-07	88.00
NC_039902.1 3c	C. arabica	42.52	2,00E-30	97.00
chr3	C. canephora	42.52	6,00E-31	97.00
NC_040037.1 3eu	C. eugenioides	43.31	1,00E-30	97.00
NC_039914.1 9c	C. arabica	33.03	3,00E-08	81.00
chr9	C. canephora	33.03	1,00E-08	81.00
NC_040043.1 9eu	C. eugenioides	28.24	7,00E-09	98.00
NC_039912.1 8e	C. arabica	36.79	2,00E-12	80.00
chr8	C. canephora	36.79	8,00E-13	80.00
NC_040042.1 8eu	C. eugenioides	36.79	1,00E-12	80.00
NC_039908.1 6c	C. arabica	55.43	3,00E-31	93.00
chr6	C. canephora	55.43	9,00E-32	93.00
NC_040040.1 6eu	C. eugenioides	55.43	2,00E-31	93.00

	Ribosome-recycling factor%2C chloroplastic (Fragment)
	ribosome-recycling factor%2C chloroplastic isoform X2
	DEAD-box ATP-dependent RNA helicase 37-like isoform X2
	DEAD-box ATP-dependent RNA helicase 37
	DEAD-box ATP-dependent RNA helicase 37
	enolase
	Enolase
	enolase
C	uncharacterized protein LOC113700707
0	uncharacterized protein LOC113769237
0	uncharacterized protein LOC113696711
0	uncharacterized protein LOC113777088
	biotin carboxyl carrier protein of acetyl-CoA carboxylase%2C chlorop
	Biotin carboxyl carrier protein of acetyl-CoA carboxylase%2C chlorop
	biotin carboxyl carrier protein of acetyl-CoA carboxylase%2C chlorop
0	RNA polymerase beta subunit
	uncharacterized protein LOC113706277
	Putative 39S ribosomal protein L24%2C mitochondrial
	uncharacterized protein LOC113780922
	probable membrane metalloprotease ARASP2%2C chloroplastic
	Putative zinc metalloprotease slr1821
	probable membrane metalloprotease ARASP2%2C chloroplastic
	dihydrolipoyl dehydrogenase%2C mitochondrial-like
	Dihydrolipoyl dehydrogenase 1%2C mitochondrial
	dihydrolipoyl dehydrogenase 1%2C mitochondrial-like
	LOW QUALITY PROTEIN: mitochondrial amidoxime reducing compon
	Putative MOSC domain-containing protein 2%2C mitochondrial
	mitochondrial amidoxime-reducing component 1-like
	ABC transporter B family member 10-like
	ABC transporter B family member 2
	ABC transporter B family member 10-like
	peroxiredoxin Q%2C chloroplastic
	Peroxiredoxin Q%2C chloroplastic
	peroxiredoxin Q%2C chloroplastic

plastic-like plastic plastic

nent 2-like

NODE_551_length_385_cov_1.23701:g362.t1
NODE_553_length_385_cov_1.88961:g363.t1
NODE_553_length_385_cov_1.88961:g363.t1
NODE_558_length_384_cov_1.43648:g367.t1
NODE_558_length_384_cov_1.43648:g367.t1
NODE_558_length_384_cov_1.43648:g367.t1
NODE_567_length_383_cov_1.44118:g372.t1
NODE_567_length_383_cov_1.44118:g372.t1
NODE_567_length_383_cov_1.44118:g372.t1
NODE_581_length_380_cov_1.39604:g379.t1
NODE_591_length_378_cov_1.46844:g384.t1
NODE_591_length_378_cov_1.46844:g384.t1
NODE_591_length_378_cov_1.46844:g384.t1
NODE_611_length_375_cov_1.91275:g394.t1
NODE_611_length_375_cov_1.91275:g394.t1
NODE_611_length_375_cov_1.91275:g394.t1
NODE_614_length_375_cov_1.23154:g396.t1
NODE_614_length_375_cov_1.23154:g396.t1
NODE_614_length_375_cov_1.23154:g396.t1
NODE_621_length_374_cov_2.29966:g400.t1
NODE_621_length_374_cov_2.29966:g400.t1
NODE_621_length_374_cov_2.29966:g400.t1
NODE_629_length_372_cov_1.49831:g406.t1
NODE_629_length_372_cov_1.49831:g406.t1
NODE_629_length_372_cov_1.49831:g406.t1
NODE_634_length_371_cov_1.7551:g411.t1
NODE_634_length_371_cov_1.7551:g411.t1
NODE_634_length_371_cov_1.7551:g411.t1
NODE_635_length_371_cov_1.72109:g412.t1
NODE_635_length_371_cov_1.72109:g412.t1
NODE_635_length_371_cov_1.72109:g412.t1
NODE_639_length_370_cov_2.49829:g416.t1
NODE_639_length_370_cov_2.49829:g416.t1
NODE 639 length 370 cov 2.49829:g416.t1

NC_008535.1 chloroplast	C. arabica	42.11	1,00E-08	75.00
NC_039907.1 5c	C. arabica	73.98	1,00E-53	100.00
NC_040043.1 9eu	C. eugenioides	70.97	4,00E-41	75.00
NC_039906.1 5e	C. arabica	41.10	1,00E-15	74.00
chr5	C. canephora	41.10	1,00E-15	74.00
NC_040039.1 5eu	C. eugenioides	41.10	1,00E-15	74.00
NC_039904.1 4c	C. arabica	30.48	3,00E-08	83.00
chr0	C. canephora	30.48	8,00E-09	83.00
NC_040038.1 4eu	C. eugenioides	30.48	2,00E-08	83.00
NC_008535.1 chloroplast	C. arabica	43.90	1,00E-18	62.00
NC_039898.1 1c	C. arabica	34.21	5,00E-15	89.00
chr7	C. canephora	29.75	2,00E-09	95.00
NC_040035.1 1eu	C. eugenioides	32.46	1,00E-14	89.00
NC_039915.1 9e	C. arabica	43.59	1,00E-12	78.00
chr9	C. canephora	43.59	3,00E-13	78.00
NC_040043.1 9eu	C. eugenioides	42.31	2,00E-12	78.00
NC_039903.1 3e	C. arabica	34.04	3,00E-09	75.00
chr3	C. canephora	32.98	5,00E-09	75.00
NC_040037.1 3eu	C. eugenioides	32.98	1,00E-08	75.00
NC_039901.1 2e	C. arabica	41.18	2,00E-23	95.00
chr2	C. canephora	41.18	4,00E-24	95.00
NC_040036.1 2eu	C. eugenioides	41.18	1,00E-23	95.00
NC_039909.1 6e	C. arabica	53.28	1,00E-38	99.00
chr6	C. canephora	53.28	8,00E-39	99.00
NC_040040.1 6eu	C. eugenioides	53.28	8,00E-39	99.00
NC_039908.1 6c	C. arabica	36.67	6,00E-16	73.00
chr6	C. canephora	34.21	1,00E-16	90.00
NC_040040.1 6eu	C. eugenioides	36.67	2,00E-17	73.00
NW_020850478.1 scaffold	C. arabica	35.77	9,00E-19	99.00
chr7	C. canephora	37.40	8,00E-22	99.00
NC_040045.1 11eu 11eu	C. eugenioides	37.40	7,00E-21	99.00
NC_039912.1 8e	C. arabica	99.15	6,00E-76	100.00
chr0	C. canephora	38.68	3,00E-18	88.00
NW_020863140.1 scaffold	C. eugenioides	100.00	7,00E-77	100.00

0	ribosomal protein L22
00	uncharacterized protein LOC113690699
D	uncharacterized protein LOC113782301
D	DNA repair protein recA homolog 1%2C chloroplastic-like isoform X3
D	DNA repair protein recA homolog 1%2C chloroplastic
D	DNA repair protein recA homolog 1%2C chloroplastic isoform X1
D	peptidyl-prolyl cis-trans isomerase NIMA-interacting 4-like
D	FKBP-like peptidyl-prolyl cis-trans isomerase family protein
D	peptidyl-prolyl cis-trans isomerase NIMA-interacting 4
D	RNA polymerase beta' subunit
D	LOW QUALITY PROTEIN: 4-coumarateCoA ligase-like 7
D	4-coumarateCoA ligase-like 1
D	4-coumarateCoA ligase-like 7
D	riboflavin biosynthesis protein PYRR%2C chloroplastic-like
D	Putative Riboflavin biosynthesis protein RibD
D	riboflavin biosynthesis protein PYRR%2C chloroplastic
D	dihydroxy-acid dehydratase%2C chloroplastic-like
D	Dihydroxy-acid dehydratase
0	dihydroxy-acid dehydratase%2C chloroplastic-like
0	stromal 70 kDa heat shock-related protein%2C chloroplastic-like
D	Stromal 70 kDa heat shock-related protein%2C chloroplastic
D	stromal 70 kDa heat shock-related protein%2C chloroplastic-like
D	leucine aminopeptidase 1-like
D	Leucine aminopeptidase 3%2C chloroplastic
D	leucine aminopeptidase 1-like
D	D-lactate dehydrogenase [cytochrome]%2C mitochondrial
D	D-lactate dehydrogenase [cytochrome]%2C mitochondrial
D	D-lactate dehydrogenase [cytochrome]%2C mitochondrial isoform X2
0	LOW QUALITY PROTEIN: uncharacterized protein LOC113722974
0	Putative tRNA pseudouridine synthase B
0	uncharacterized protein LOC113754167
00	uncharacterized protein LOC113703843
D	Putative uncharacterized protein
00	uncharacterized protein LOC113757037

NODE_640_length_370_cov_2:g417.t1	NC_039919.1 11e	C. arabica	71.59	1,00E-40	98.00	1%2C4-dihydroxy-2-naphthoyl-CoA synthase%2C peroxisomal-like iso
NODE_640_length_370_cov_2:g417.t1	chr11	C. canephora	71.59	7,00E-41	98.00	1%2C4-Dihydroxy-2-naphthoyl-CoA synthase%2C peroxisomal
NODE_640_length_370_cov_2:g417.t1	NC_040045.1 11eu 11eu	C. eugenioides	71.59	1,00E-40	98.00	1%2C4-dihydroxy-2-naphthoyl-CoA synthase%2C peroxisomal
NODE_654_length_368_cov_2.03436:g427.t1	NC_039909.1 6e	C. arabica	81.01	2,00E-38	98.00	uncharacterized protein LOC113696799
NODE_654_length_368_cov_2.03436:g427.t1	NC_040040.1 6eu	C. eugenioides	71.01	3,00E-28	86.00	uncharacterized protein LOC113774009
NODE_666_length_367_cov_0.87931:g432.t1	NC_039919.1 11e	C. arabica	92.62	8,00E-76	100.00	uncharacterized protein LOC113718074
NODE_666_length_367_cov_0.87931:g432.t1	NC_040042.1 8eu	C. eugenioides	93.44	7,00E-75	100.00	uncharacterized protein LOC113780676
NODE_706_length_362_cov_1.01754:g456.t1	NC_039907.1 5c	C. arabica	46.46	8,00E-25	82.00	glucose-1-phosphate adenylyltransferase small subunit%2C chloropla
NODE_706_length_362_cov_1.01754:g456.t1	chr5	C. canephora	46.46	3,00E-25	82.00	Glucose-1-phosphate adenylyltransferase small subunit%2C chloropla
NODE_706_length_362_cov_1.01754:g456.t1	NC_040039.1 5eu	C. eugenioides	46.46	5,00E-25	82.00	glucose-1-phosphate adenylyltransferase small subunit%2C chloropla
NODE_714_length_360_cov_1.53004:g460.t1	NC_039917.1 10c	C. arabica	48.33	5,00E-27	97.00	glucose-6-phosphate isomerase%2C cytosolic
NODE_714_length_360_cov_1.53004:g460.t1	chr10	C. canephora	48.33	6,00E-29	97.00	Glucose-6-phosphate isomerase%2C cytosolic 1
NODE_714_length_360_cov_1.53004:g460.t1	NC_040044.1 10eu	C. eugenioides	48.33	3,00E-27	97.00	glucose-6-phosphate isomerase%2C cytosolic
NODE_719_length_360_cov_2.60071:g465.t1	NC_039902.1 3c	C. arabica	32.50	2,00E-07	100.00	perakine reductase-like isoform X2
NODE_719_length_360_cov_2.60071:g465.t1	chr3	C. canephora	32.50	1,00E-07	100.00	Perakine reductase
NODE_719_length_360_cov_2.60071:g465.t1	NC_040037.1 3eu	C. eugenioides	32.50	1,00E-07	100.00	perakine reductase-like isoform X2
NODE_723_length_359_cov_1.80496:g468.t1	NC_039914.1 9c	C. arabica	34.68	4,00E-10	100.00	ABC transporter B family member 9-like
NODE_723_length_359_cov_1.80496:g468.t1	chr0	C. canephora	37.17	1,00E-10	88.00	Putative ABC transporter B family member 9
NODE_723_length_359_cov_1.80496:g468.t1	NC_040043.1 9eu	C. eugenioides	37.17	5,00E-10	88.00	ABC transporter B family member 4-like
NODE_738_length_357_cov_1.31071:g477.t1	NC_039919.1 11e	C. arabica	63.87	6,00E-49	100.00	uracil-DNA glycosylase%2C mitochondrial-like
NODE_738_length_357_cov_1.31071:g477.t1	chr11	C. canephora	63.03	9,00E-49	100.00	Uracil-DNA glycosylase
NODE_738_length_357_cov_1.31071:g477.t1	NC_040045.1 11eu 11eu	C. eugenioides	63.87	4,00E-49	100.00	uracil-DNA glycosylase%2C mitochondrial
NODE_748_length_356_cov_1.5233:g482.t1	NC_039901.1 2e	C. arabica	61.29	9,00E-21	83.00	DNA gyrase subunit A%2C chloroplastic/mitochondrial-like
NODE_748_length_356_cov_1.5233:g482.t1	chr2	C. canephora	61.29	3,00E-21	83.00	DNA gyrase subunit A%2C chloroplastic/mitochondrial
NODE_748_length_356_cov_1.5233:g482.t1	NC_040036.1 2eu	C. eugenioides	62.90	1,00E-21	83.00	DNA gyrase subunit A%2C chloroplastic/mitochondrial
NODE_749_length_356_cov_1.17563:g483.t1	NC_039904.1 4c	C. arabica	35.48	1,00E-17	99.00	uncharacterized protein LOC113738644 isoform X1
NODE_749_length_356_cov_1.17563:g483.t1	chr6	C. canephora	35.48	3,00E-18	99.00	Putative Alpha-glucosidase yihQ
NODE_749_length_356_cov_1.17563:g483.t1	NC_040040.1 6eu	C. eugenioides	35.48	7,00E-18	99.00	uncharacterized protein LOC113773196
NODE_762_length_354_cov_1.59206:g493.t1	chr0	C. canephora	34.69	7,00E-06	100.00	50S ribosomal protein L21
NODE_762_length_354_cov_1.59206:g493.t1	NC_040041.1 7eu	C. eugenioides	28.57	1,00E-07	100.00	50S ribosomal protein L21%2C chloroplastic
NODE_765_length_354_cov_1.38628:g495.t1	NC_039919.1 11e	C. arabica	34.94	4,00E-11	70.00	uncharacterized protein LOC113718834
NODE_765_length_354_cov_1.38628:g495.t1	chr11	C. canephora	34.94	1,00E-11	70.00	phosphoglucomutase%2C putative / glucose phosphomutase%2C put
NODE_765_length_354_cov_1.38628:g495.t1	NC_040045.1 11eu 11eu	C. eugenioides	34.94	2,00E-11	70.00	uncharacterized protein LOC113751259
NODE_766_length_354_cov_1.22744:g497.t1	NC_039906.1 5e	C. arabica	35.83	8,00E-17	99.00	putative DUF21 domain-containing protein At3g13070%2C chloroplas

soform X2

lastic/amyloplastic lastic lastic/amyloplastic

utative

astic isoform X2

NODE_766_length_354_cov_1.22744:g497.t1
NODE_766_length_354_cov_1.22744:g497.t1
NODE_774_length_352_cov_1.60364:g500.t1
NODE_774_length_352_cov_1.60364:g500.t1
NODE_774_length_352_cov_1.60364:g500.t1
NODE_782_length_352_cov_1.52364:g505.t1
NODE_782_length_352_cov_1.52364:g505.t1
NODE_782_length_352_cov_1.52364:g505.t1
NODE_788_length_351_cov_2.15328:g510.t1
NODE_788_length_351_cov_2.15328:g510.t1
NODE_788_length_351_cov_2.15328:g510.t1
NODE_802_length_350_cov_1.61538:g519.t1
NODE_802_length_350_cov_1.61538:g519.t1
NODE_802_length_350_cov_1.61538:g519.t1
NODE_804_length_350_cov_1.62637:g520.t1
NODE_804_length_350_cov_1.62637:g520.t1
NODE_804_length_350_cov_1.62637:g520.t1
NODE_805_length_350_cov_2.24176:g521.t1
NODE_805_length_350_cov_2.24176:g521.t1
NODE_805_length_350_cov_2.24176:g521.t1
NODE_821_length_348_cov_1.29151:g530.t1
NODE_821_length_348_cov_1.29151:g530.t1
NODE_821_length_348_cov_1.29151:g530.t1
NODE_824_length_347_cov_2.09259:g532.t1
NODE_824_length_347_cov_2.09259:g532.t1
NODE_824_length_347_cov_2.09259:g532.t1
NODE_826_length_347_cov_1.0963:g534.t1
NODE_826_length_347_cov_1.0963:g534.t1
NODE_836_length_346_cov_1.08922:g540.t1
NODE_836_length_346_cov_1.08922:g540.t1
NODE_836_length_346_cov_1.08922:g540.t1
NODE_842_length_345_cov_1.83955:g544.t1
NODE_842_length_345_cov_1.83955:g544.t1
NODE_842_length_345_cov_1.83955:g544.t1

chr5	C. canephora	35.29	2,00E-17	99.00
NC_040039.1 5eu	C. eugenioides	35.29	3,00E-17	99.00
NC_039900.1 2c	C. arabica	42.20	9,00E-24	93.00
chr2	C. canephora	42.20	3,00E-24	93.00
NC_040036.1 2eu	C. eugenioides	42.20	5,00E-24	93.00
NC_039917.1 10c	C. arabica	60.42	1,00E-33	97.00
chr1	C. canephora	66.33	3,00E-40	100.00
NC_040035.1 1eu	C. eugenioides	66.33	6,00E-40	100.00
NC_039919.1 11e	C. arabica	36.45	8,00E-20	92.00
chr11	C. canephora	35.51	2,00E-19	92.00
NC_040045.1 11eu 11eu	C. eugenioides	36.45	4,00E-20	92.00
NC_039919.1 11e	C. arabica	46.73	3,00E-21	92.00
chr11	C. canephora	46.73	1,00E-21	92.00
NC_040045.1 11eu 11eu	C. eugenioides	46.73	3,00E-21	92.00
NC_008535.1 chloroplast	C. arabica	58.18	2,00E-25	100.00
chr11	C. canephora	60.00	1,00E-25	100.00
NC_040045.1 11eu 11eu	C. eugenioides	60.00	2,00E-25	100.00
NC_039910.1 7c	C. arabica	30.36	3,00E-19	96.00
chr7	C. canephora	30.36	5,00E-20	96.00
NC_040041.1 7eu	C. eugenioides	30.36	2,00E-19	96.00
NC_039914.1 9c	C. arabica	48.31	5,00E-34	94.00
chr9	C. canephora	48.31	2,00E-34	94.00
NC_040043.1 9eu	C. eugenioides	46.61	1,00E-32	94.00
NC_039916.1 10e	C. arabica	52.08	4,00E-13	81.00
chr10	C. canephora	52.08	1,00E-13	81.00
NC_040044.1 10eu	C. eugenioides	52.08	3,00E-13	81.00
NC_039903.1 3e	C. arabica	34.25	2,00E-07	93.00
chr3	C. canephora	34.25	5,00E-08	93.00
NC_039914.1 9c	C. arabica	55.65	8,00E-48	100.00
chr9	C. canephora	55.65	5,00E-48	100.00
NC_040043.1 9eu	C. eugenioides	55.65	3,00E-48	100.00
NC_039917.1 10c	C. arabica	45.28	1,00E-08	45.00
chr9	C. canephora	29.13	2,00E-10	90.00
NC_040043.1 9eu	C. eugenioides	29.13	3,00E-10	90.00

DUF21 domain-containing protein At1g55930%2C chloroplastic
putative DUF21 domain-containing protein At3g13070%2C chloroplastic is
glycogen phosphorylase 1-like
Glycogen phosphorylase 1
glycogen phosphorylase 1-like isoform X3
alcohol dehydrogenase 1-like
Alcohol dehydrogenase class-3
alcohol dehydrogenase class-3
tryptophan synthase alpha chain-like
Indole-3-glycerol phosphate lyase%2C chloroplastic
tryptophan synthase alpha chain-like
lipoyl synthase%2C chloroplastic-like
Lipoyl synthase%2C chloroplastic
lipoyl synthase%2C chloroplastic
ATP synthase CF1 beta subunit
ATP synthase subunit beta
ATP synthase subunit beta%2C mitochondrial
uncharacterized protein LOC113698190 isoform X2
Putative Methionine aminotransferase
uncharacterized protein LOC113777435 isoform X2
glutamatetRNA ligase%2C chloroplastic/mitochondrial-like
GlutamatetRNA ligase%2C chloroplastic/mitochondrial
glutamatetRNA ligase%2C chloroplastic/mitochondrial-like isoform X1
serinetRNA ligase%2C chloroplastic/mitochondrial-like isoform X1
SerinetRNA ligase
serinetRNA ligase%2C chloroplastic/mitochondrial isoform X1
bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase%20
Bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenase%20
uncharacterized protein LOC113708912 isoform X2
Putative Uncharacterized protein yqjG
LOW QUALITY PROTEIN: uncharacterized protein LOC113783053
long chain acyl-CoA synthetase 9%2C chloroplastic-like
2-succinylbenzoateCoA ligase%2C chloroplastic/peroxisomal
2-succinylbenzoateCoA ligase%2C chloroplastic/peroxisomal isoform X2

plastic isoform X2

nase%2C chloroplastic isoform X2 nase%2C chloroplastic

NODE_844_length_344_cov_1.64419:g546.t1	NC_039910.1 7c	C. arabica	88.89	5,00E-39	94.00	zinc finger protein GAI-ASSOCIATED FACTOR 1-like
NODE_844_length_344_cov_1.64419:g546.t1	chr7	C. canephora	88.89	3,00E-39	94.00	C2H2-like zinc finger protein
NODE_844_length_344_cov_1.64419:g546.t1	NC_040041.1 7eu	C. eugenioides	88.89	4,00E-39	94.00	zinc finger protein GAI-ASSOCIATED FACTOR 1-like
NODE_856_length_344_cov_1.36704:g554.t1	NC_039914.1 9c	C. arabica	44.83	2,00E-10	82.00	glutamatetRNA ligase%2C chloroplastic/mitochondrial-like
NODE_856_length_344_cov_1.36704:g554.t1	chr9	C. canephora	44.83	7,00E-11	82.00	GlutamatetRNA ligase%2C chloroplastic/mitochondrial
NODE_856_length_344_cov_1.36704:g554.t1	NC_040043.1 9eu	C. eugenioides	44.83	1,00E-10	82.00	glutamatetRNA ligase%2C chloroplastic/mitochondrial-like isoform X1
NODE_863_length_343_cov_2.19549:g558.t1	NC_039903.1 3e	C. arabica	33.96	2,00E-10	93.00	bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenases
NODE_863_length_343_cov_2.19549:g558.t1	chr3	C. canephora	33.96	2,00E-10	93.00	Bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenases
NODE_863_length_343_cov_2.19549:g558.t1	NC_040037.1 3eu	C. eugenioides	33.96	8,00E-11	93.00	bifunctional 3-dehydroquinate dehydratase/shikimate dehydrogenases
NODE_864_length_343_cov_2.43609:g559.t1	NC_039918.1 11c	C. arabica	46.55	2,00E-09	58.00	ATPase WRNIP1-like
NODE_864_length_343_cov_2.43609:g559.t1	chr11	C. canephora	46.55	6,00E-10	58.00	AAA-type ATPase family protein
NODE_864_length_343_cov_2.43609:g559.t1	NC_040045.1 11eu 11eu	C. eugenioides	46.55	8,00E-10	58.00	ATPase WRNIP1
NODE_877_length_341_cov_1.79924:g568.t1	NC_039912.1 8e	C. arabica	54.29	4,00E-14	93.00	uncharacterized protein LOC113703097
NODE_877_length_341_cov_1.79924:g568.t1	NC_040045.1 11eu 11eu	C. eugenioides	68.00	7,00E-25	100.00	LRR receptor-like serine/threonine-protein kinase GSO2
NODE_886_length_340_cov_1.11407:g574.t1	chr9	C. canephora	28.99	3,00E-07	75.00	Bifunctional dihydrofolate reductase-thymidylate synthase
NODE_886_length_340_cov_1.11407:g574.t1	NC_040043.1 9eu	C. eugenioides	28.99	1,00E-06	75.00	putative bifunctional dihydrofolate reductase-thymidylate synthase
NODE_893_length_340_cov_1.68061:g577.t1	NC_039911.1 7e	C. arabica	41.59	9,00E-19	98.00	phosphoenolpyruvate carboxykinase (ATP)-like
NODE_893_length_340_cov_1.68061:g577.t1	chr7	C. canephora	42.48	1,00E-19	98.00	Phosphoenolpyruvate carboxykinase [ATP]
NODE_893_length_340_cov_1.68061:g577.t1	NC_040041.1 7eu	C. eugenioides	41.59	5,00E-19	98.00	phosphoenolpyruvate carboxykinase (ATP)-like
NODE_897_length_339_cov_1.60305:g578.t1	NC_039903.1 3e	C. arabica	38.39	3,00E-17	97.00	ribulose-phosphate 3-epimerase%2C cytoplasmic isoform-like
NODE_897_length_339_cov_1.60305:g578.t1	chr0	C. canephora	38.39	1,00E-17	97.00	Ribulose-phosphate 3-epimerase%2C cytoplasmic isoform
NODE_897_length_339_cov_1.60305:g578.t1	NC_040038.1 4eu	C. eugenioides	31.82	3,00E-17	97.00	ribulose-phosphate 3-epimerase%2C chloroplastic
NODE_899_length_339_cov_1.12595:g579.t1	NC_039901.1 2e	C. arabica	36.78	9,00E-09	97.00	DNA damage-repair/toleration protein DRT102-like
NODE_899_length_339_cov_1.12595:g579.t1	chr2	C. canephora	36.78	5,00E-09	97.00	DNA-damage-repair/toleration protein DRT102
NODE_899_length_339_cov_1.12595:g579.t1	NC_040036.1 2eu	C. eugenioides	36.78	6,00E-09	97.00	DNA damage-repair/toleration protein DRT102
NODE_903_length_339_cov_1.94656:g582.t1	NC_039918.1 11c	C. arabica	44.00	9,00E-16	100.00	acetyl-coenzyme A synthetase%2C chloroplastic/glyoxysomal-like
NODE_903_length_339_cov_1.94656:g582.t1	chr11	C. canephora	44.00	5,00E-16	100.00	AcetateCoA ligase ACS%2C chloroplastic/glyoxysomal
NODE_903_length_339_cov_1.94656:g582.t1	NC_040045.1 11eu 11eu	C. eugenioides	44.00	1,00E-15	100.00	acetyl-coenzyme A synthetase%2C chloroplastic/glyoxysomal-like
NODE_928_length_337_cov_1.11154:g593.t1	NC_039908.1 6c	C. arabica	46.67	2,00E-09	50.00	uncharacterized protein LOC113691999
NODE_928_length_337_cov_1.11154:g593.t1	chr6	C. canephora	46.67	5,00E-10	50.00	Putative D-alanineD-alanine ligase A
NODE_928_length_337_cov_1.11154:g593.t1	NC_040040.1 6eu	C. eugenioides	46.67	9,00E-10	50.00	uncharacterized protein LOC113775590
NODE_930_length_336_cov_2.02317:g594.t1	NC_039910.1 7c	C. arabica	34.45	1,00E-11	100.00	probable amino-acid acetyltransferase NAGS1%2C chloroplastic
NODE_930_length_336_cov_2.02317:g594.t1	chr7	C. canephora	34.45	3,00E-12	100.00	Putative Amino-acid acetyltransferase
NODE_930_length_336_cov_2.02317:g594.t1	NC_040041.1 7eu	C. eugenioides	34.45	2,00E-11	100.00	probable amino-acid acetyltransferase NAGS1%2C chloroplastic

orm X1 enase%2C chloroplastic isoform X1 enase%2C chloroplastic enase%2C chloroplastic isoform X1

NODE_952_length_333_cov_1.59375:g609.t1
NODE_952_length_333_cov_1.59375:g609.t1
NODE_952_length_333_cov_1.59375:g609.t1
NODE_954_length_333_cov_1.61328:g610.t1
NODE_954_length_333_cov_1.61328:g610.t1
NODE_954_length_333_cov_1.61328:g610.t1
NODE_959_length_332_cov_1.15294:g612.t1
NODE_959_length_332_cov_1.15294:g612.t1
NODE_959_length_332_cov_1.15294:g612.t1
NODE_961_length_332_cov_1.16078:g614.t1
NODE_961_length_332_cov_1.16078:g614.t1
NODE_961_length_332_cov_1.16078:g614.t1
NODE_976_length_331_cov_2.02756:g621.t1
NODE_976_length_331_cov_2.02756:g621.t1
NODE_976_length_331_cov_2.02756:g621.t1
NODE_981_length_330_cov_0.873518:g624.t1
NODE_981_length_330_cov_0.873518:g624.t1
NODE_981_length_330_cov_0.873518:g624.t1
NODE_983_length_330_cov_1.22134:g626.t1
NODE_985_length_330_cov_2.33202:g628.t1
NODE_985_length_330_cov_2.33202:g628.t1
NODE_985_length_330_cov_2.33202:g628.t1
NODE_1013_length_326_cov_2.93574:g640.t1
NODE_1013_length_326_cov_2.93574:g640.t1
NODE_1013_length_326_cov_2.93574:g640.t1
NODE_1014_length_326_cov_1.40562:g641.t1
NODE_1014_length_326_cov_1.40562:g641.t1
NODE_1014_length_326_cov_1.40562:g641.t1
NODE_1019_length_325_cov_1.5:g643.t1
NODE_1019_length_325_cov_1.5:g643.t1
NODE_1019_length_325_cov_1.5:g643.t1
NODE_1021_length_325_cov_1.67742:g644.t1
NODE_1021_length_325_cov_1.67742:g644.t1
NODE_1021_length_325_cov_1.67742:g644.t1

NC_039916.1 10e	C. arabica	61.47	9,00E-40	99.00
chr10	C. canephora	61.47	3,00E-40	99.00
NC_040044.1 10eu	C. eugenioides	61.47	9,00E-40	99.00
NC_039908.1 6c	C. arabica	49.14	2,00E-30	100.00
chr6	C. canephora	49.14	4,00E-31	100.00
NC_040040.1 6eu	C. eugenioides	49.14	6,00E-31	100.00
NC_039914.1 9c	C. arabica	42.05	9,00E-16	88.00
chr6	C. canephora	42.05	2,00E-16	88.00
NC_040040.1 6eu	C. eugenioides	42.05	5,00E-16	88.00
NC_039899.1 1e	C. arabica	27.12	1,00E-06	99.00
chr1	C. canephora	27.12	5,00E-07	99.00
NC_040035.1 1eu	C. eugenioides	27.12	7,00E-07	99.00
NC_039900.1 2c	C. arabica	45.22	1,00E-20	100.00
chr2	C. canephora	45.22	6,00E-21	100.00
NC_040036.1 2eu	C. eugenioides	45.22	6,00E-21	100.00
NC_039908.1 6c	C. arabica	40.00	2,00E-08	77.00
chr6	C. canephora	40.00	1,00E-08	77.00
NC_040040.1 6eu	C. eugenioides	40.00	2,00E-08	77.00
NC_008535.1 chloroplast	C. arabica	44.55	8,00E-24	99.00
NC_039914.1 9c	C. arabica	41.75	7,00E-24	95.00
chr9	C. canephora	41.75	2,00E-24	95.00
NC_040043.1 9eu	C. eugenioides	41.75	6,00E-24	95.00
NC_039909.1 6e	C. arabica	64.52	1,00E-22	82.00
chr6	C. canephora	65.57	5,00E-23	81.00
NC_040040.1 6eu	C. eugenioides	64.52	8,00E-23	82.00
NC_039914.1 9c	C. arabica	30.49	3,00E-09	79.00
chr2	C. canephora	33.33	2,00E-09	78.00
NC_040043.1 9eu	C. eugenioides	30.49	2,00E-09	79.00
NC_039905.1 4e	C. arabica	42.50	4,00E-13	97.00
chr4	C. canephora	42.50	3,00E-13	97.00
NC_040035.1 1eu	C. eugenioides	45.68	3,00E-13	100.00
NC_039901.1 2e	C. arabica	59.22	8,00E-41	100.00
chr2	C. canephora	59.22	3,00E-41	100.00
NC_040036.1 2eu	C. eugenioides	59.22	5,00E-41	100.00

glutamate-1-semialdehyde 2%2C1-aminomutase%2C chloroplastic-
Glutamate-1-semialdehyde 2%2C1-aminomutase%2C chloroplastic
glutamate-1-semialdehyde 2%2C1-aminomutase%2C chloroplastic-
probable polyribonucleotide nucleotidyltransferase 1%2C chloropla
Putative Polyribonucleotide nucleotidyltransferase
probable polyribonucleotide nucleotidyltransferase 1%2C chloropla
adenylosuccinate synthetase 2%2C chloroplastic-like
Adenylosuccinate synthetase%2C chloroplastic
adenylosuccinate synthetase 2%2C chloroplastic
choline monooxygenase%2C chloroplastic-like
Choline monooxygenase%2C chloroplastic
choline monooxygenase%2C chloroplastic
3-phosphoshikimate 1-carboxyvinyltransferase 2 isoform X2
3-phosphoshikimate 1-carboxyvinyltransferase%2C chloroplastic
3-phosphoshikimate 1-carboxyvinyltransferase 2
uncharacterized protein LOC113691859
Putative Alpha-glucosidase yihQ
uncharacterized protein LOC113773196
RNA polymerase beta subunit
leucinetRNA ligase%2C chloroplastic/mitochondrial-like
LeucinetRNA ligase
leucinetRNA ligase%2C chloroplastic/mitochondrial
S-formylglutathione hydrolase-like isoform X1
S-formylglutathione hydrolase
S-formylglutathione hydrolase isoform X1
ABC transporter C family member 12-like isoform X1
ABC transporter C family member 9
ABC transporter C family member 12-like
ABC transporter I family member 17-like isoform X1
ABC transporter I family member 17
ABC transporter B family member 25%2C mitochondrial isoform X1
glycinetRNA ligase%2C chloroplastic/mitochondrial 2-like isoform
GlycinetRNA ligase 2%2C chloroplastic/mitochondrial
LOW QUALITY PROTEIN: glycinetRNA ligase%2C chloroplastic/mitc

:-like

:-like

astic

astic

ז X2

tochondrial 2

NODE_1023_length_325_cov_1.78226:g645.t1
NODE_1023_length_325_cov_1.78226:g645.t1
NODE_1023_length_325_cov_1.78226:g645.t1
$NODE_1033_length_324_cov_0.898785:g650.t1$
$NODE_1033_length_324_cov_0.898785:g650.t1$
NODE_1033_length_324_cov_0.898785:g650.t1
NODE_1037_length_323_cov_1.20325:g653.t1
NODE_1037_length_323_cov_1.20325:g653.t1
NODE_1037_length_323_cov_1.20325:g653.t1
NODE_1054_length_322_cov_1.90612:g660.t1
NODE_1054_length_322_cov_1.90612:g660.t1
NODE_1065_length_321_cov_1.30738:g665.t1
NODE_1065_length_321_cov_1.30738:g665.t1
NODE_1066_length_321_cov_2.06967:g666.t1
NODE_1066_length_321_cov_2.06967:g666.t1
NODE_1066_length_321_cov_2.06967:g666.t1
NODE_1077_length_319_cov_1.21074:g671.t1
NODE_1077_length_319_cov_1.21074:g671.t1
NODE_1077_length_319_cov_1.21074:g671.t1
NODE_1087_length_318_cov_1.73444:g679.t1
NODE_1087_length_318_cov_1.73444:g679.t1
NODE_1087_length_318_cov_1.73444:g679.t1
NODE_1089_length_318_cov_1.41079:g681.t1
NODE_1089_length_318_cov_1.41079:g681.t1
NODE_1089_length_318_cov_1.41079:g681.t1
NODE_1108_length_316_cov_2.12552:g688.t1
NODE_1108_length_316_cov_2.12552:g688.t1
NODE_1108_length_316_cov_2.12552:g688.t1
NODE_1116_length_314_cov_1.87342:g692.t1
NODE_1116_length_314_cov_1.87342:g692.t1
NODE_1116_length_314_cov_1.87342:g692.t1
NODE_1119_length_314_cov_2.18565:g694.t1
NODE_1119_length_314_cov_2.18565:g694.t1
NODE_1119_length_314_cov_2.18565:g694.t1

NC_039916.1 10e	C. arabica	33.72	5,00E-11
chr10	C. canephora	33.72	2,00E-11
NC_040044.1 10eu	C. eugenioides	32.56	4,00E-11
NC_039909.1 6e	C. arabica	37.14	8,00E-15
chr6	C. canephora	37.14	2,00E-15
NC_040040.1 6eu	C. eugenioides	37.14	3,00E-15
NC_039907.1 5c	C. arabica	41.67	2,00E-07
chr6	C. canephora	52.33	3,00E-15
NC_040040.1 6eu	C. eugenioides	52.33	2,00E-15
NW_020849470.1 scaffold	C. arabica	94.38	5,00E-36
NC_040038.1 4eu	C. eugenioides	94.38	3,00E-36
NC_039906.1 5e	C. arabica	42.70	2,00E-18
NC_040039.1 5eu	C. eugenioides	42.70	8,00E-19
NC_039904.1 4c	C. arabica	37.96	4,00E-14
chr4	C. canephora	39.18	7,00E-12
NC_040038.1 4eu	C. eugenioides	37.96	2,00E-14
NC_039907.1 5c	C. arabica	32.69	1,00E-17
chr5	C. canephora	34.38	4,00E-17
NC_040039.1 5eu	C. eugenioides	34.38	9,00E-17
NC_039916.1 10e	C. arabica	75.61	5,00E-42
chr10	C. canephora	75.61	2,00E-42
NC_040044.1 10eu	C. eugenioides	75.61	3,00E-42
NC_039898.1 1c	C. arabica	75.47	4,00E-50
chr1	C. canephora	75.47	5,00E-49
NC_040035.1 1eu	C. eugenioides	75.47	3,00E-50
NC_039914.1 9c	C. arabica	45.97	2,00E-28
chr9	C. canephora	46.34	6,00E-30
NC_040043.1 9eu	C. eugenioides	46.34	9,00E-29
NC_039902.1 3c	C. arabica	41.27	3,00E-11
chr3	C. canephora	41.27	1,00E-11
NC_040037.1 3eu	C. eugenioides	39.68	3,00E-11
NC_039910.1 7c	C. arabica	42.86	3,00E-08
chr7	C. canephora	42.86	9,00E-09
NC_040041.1 7eu	C. eugenioides	42.86	1,00E-08

uncharacterized protein LOC113711900
Putative Hypoxanthine-guanine phosphoribosyltransferase
uncharacterized protein LOC113749350
glutathione hydrolase 3 isoform X2
Putative Gamma-glutamyltranspeptidase 1
glutathione hydrolase 3
elongation factor Ts%2C mitochondrial isoform X1
Elongation factor Ts
uncharacterized protein LOC113775676 isoform X3
uncharacterized protein LOC113720575
uncharacterized protein LOC113769142
imidazole glycerol phosphate synthase hisHF%2C chloroplastic-like
imidazole glycerol phosphate synthase hisHF%2C chloroplastic
isochorismate synthase%2C chloroplastic-like
Isochorismate synthase%2C chloroplastic
isochorismate synthase%2C chloroplastic
ubiquinone biosynthesis O-methyltransferase%2C mitochondrial-like
Putative 3-demethylubiquinone-9 3-methyltransferase
ubiquinone biosynthesis O-methyltransferase%2C mitochondrial
carbamoyl-phosphate synthase large chain%2C chloroplastic-like
Carbamoyl-phosphate synthase large chain
carbamoyl-phosphate synthase large chain%2C chloroplastic
phosphomethylpyrimidine synthase%2C chloroplastic isoform X3
Phosphomethylpyrimidine synthase%2C chloroplastic
phosphomethylpyrimidine synthase%2C chloroplastic isoform X3
putative bifunctional dihydrofolate reductase-thymidylate synthase is
Bifunctional dihydrofolate reductase-thymidylate synthase 2
putative bifunctional dihydrofolate reductase-thymidylate synthase
uncharacterized protein LOC113733856
Putative 30S ribosomal protein S6
uncharacterized protein LOC113765091
zinc transporter 5
Metal tolerance protein 12
zinc transporter 5

93.00

93.00

93.00

98.00

98.00

98.00

78.00

79.00

79.00

95.00 95.00

93.00

93.00

100.00

87.00

100.00

99.00

91.00

91.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

99.00

99.00

82.00

82.00

82.00

70.00

70.00

70.00

ase isoform X2

NODE_1132_length_313_cov_2:g703.t1
NODE_1132_length_313_cov_2:g703.t1
NODE_1132_length_313_cov_2:g703.t1
NODE_1150_length_311_cov_1.26068:g711.t1
NODE_1150_length_311_cov_1.26068:g711.t1
NODE_1150_length_311_cov_1.26068:g711.t1
NODE_1152_length_311_cov_1.25214:g712.t1
NODE_1152_length_311_cov_1.25214:g712.t1
NODE_1152_length_311_cov_1.25214:g712.t1
NODE_1167_length_310_cov_2.54077:g723.t1
NODE_1167_length_310_cov_2.54077:g723.t1
NODE_1167_length_310_cov_2.54077:g723.t1
NODE_1168_length_310_cov_1.09442:g724.t1
NODE_1168_length_310_cov_1.09442:g724.t1
NODE_1168_length_310_cov_1.09442:g724.t1
NODE_1170_length_309_cov_1.90517:g725.t1
NODE_1170_length_309_cov_1.90517:g725.t1
NODE_1170_length_309_cov_1.90517:g725.t1
NODE_1181_length_309_cov_2.00862:g731.t1
NODE_1181_length_309_cov_2.00862:g731.t1
NODE_1181_length_309_cov_2.00862:g731.t1
NODE_1198_length_307_cov_1.25217:g740.t1
NODE_1198_length_307_cov_1.25217:g740.t1
NODE_1198_length_307_cov_1.25217:g740.t1
NODE_1207_length_306_cov_2.26201:g747.t1
NODE_1207_length_306_cov_2.26201:g747.t1
NODE_1207_length_306_cov_2.26201:g747.t1
NODE_1226_length_305_cov_1.26754:g758.t1
NODE_1228_length_304_cov_1.95595:g760.t1
NODE_1228_length_304_cov_1.95595:g760.t1
NODE_1228_length_304_cov_1.95595:g760.t1
NODE_1235_length_304_cov_0.964758:g763.t1
NODE_1235_length_304_cov_0.964758:g763.t1
NODE_1235_length_304_cov_0.964758:g763.t1

NC_039916.1 10e	C. arabica	31.73	4,00E-11
chr10	C. canephora	31.73	1,00E-11
NC_040044.1 10eu	C. eugenioides	31.73	9,00E-12
NC_039910.1 7c	C. arabica	46.15	3,00E-20
chr7	C. canephora	46.15	9,00E-21
NC_040045.1 11eu 11eu	C. eugenioides	45.19	3,00E-20
NC_039910.1 7c	C. arabica	66.34	1,00E-28
chr7	C. canephora	66.34	4,00E-29
NC_040041.1 7eu	C. eugenioides	66.34	7,00E-29
NC_039916.1 10e	C. arabica	46.94	6,00E-23
chr10	C. canephora	46.94	9,00E-24
NC_040044.1 10eu	C. eugenioides	46.94	3,00E-23
NC_039907.1 5c	C. arabica	40.20	1,00E-15
chr5	C. canephora	40.20	3,00E-16
NC_040039.1 5eu	C. eugenioides	38.24	4,00E-15
NC_039898.1 1c	C. arabica	82.95	2,00E-48
chr1	C. canephora	82.95	7,00E-49
NC_040035.1 1eu	C. eugenioides	82.95	2,00E-48
NC_039917.1 10c	C. arabica	100.00	4,00E-56
chr10	C. canephora	96.59	6,00E-54
NC_040044.1 10eu	C. eugenioides	96.59	1,00E-56
NC_039910.1 7c	C. arabica	63.16	6,00E-29
chr7	C. canephora	63.16	2,00E-29
NC_040045.1 11eu 11eu	C. eugenioides	63.16	3,00E-29
NC_039904.1 4c	C. arabica	43.56	4,00E-23
chr4	C. canephora	40.00	7,00E-21
NC_040038.1 4eu	C. eugenioides	43.56	2,00E-23
NC_008535.1 chloroplast	C. arabica	52.78	9,00E-26
NC_039903.1 3e	C. arabica	34.85	6,00E-15
chr3	C. canephora	34.09	5,00E-15
NC_040037.1 3eu	C. eugenioides	34.09	2,00E-14
NC_039919.1 11e	C. arabica	58.54	4,00E-21
chr11	C. canephora	58.54	1,00E-21
NW_020863752.1 scaffold	C. eugenioides	59.76	1,00E-21

95.00	ABC transporter B family member 13-like
95.00	ABC transporter B family member 13
95.00	ABC transporter B family member 13-like isoform X1
100.00	L-aspartate oxidase%2C chloroplastic-like
100.00	Putative L-aspartate oxidase
100.00	L-aspartate oxidase%2C chloroplastic
98.00	probable 1-deoxy-D-xylulose-5-phosphate synthase 2%2C chloropla
98.00	Probable 1-deoxy-D-xylulose-5-phosphate synthase 2%2C chloropla
98.00	probable 1-deoxy-D-xylulose-5-phosphate synthase 2%2C chloropla
96.00	uncharacterized protein LOC113712902
96.00	Putative Methionine aminotransferase
96.00	uncharacterized protein LOC113748699
97.00	phosphoglycerate kinase%2C chloroplastic-like
97.00	Phosphoglycerate kinase%2C cytosolic
97.00	exocyst complex component EXO70B1-like
86.00	elongation factor Tu%2C mitochondrial-like
86.00	Elongation factor Tu%2C mitochondrial
86.00	elongation factor Tu%2C mitochondrial
100.00	probable LRR receptor-like serine/threonine-protein kinase At3g47
100.00	Putative Probable LRR receptor-like serine/threonine-protein kinase
100.00	receptor kinase-like protein Xa21
93.00	translation factor GUF1 homolog%2C mitochondrial isoform X1
93.00	Translation factor GUF1 homolog%2C mitochondrial
93.00	translation factor GUF1 homolog%2C mitochondrial isoform X1
100.00	aldehyde dehydrogenase family 2 member C4-like
100.00	Aldehyde dehydrogenase family 2 member C4
100.00	aldehyde dehydrogenase family 2 member C4-like
99.00	NADH dehydrogenase subunit 5
96.00	ubiquinone biosynthesis monooxygenase COQ6%2C mitochondrial-
96.00	Putative Ubiquinone biosynthesis monooxygenase COQ6
96.00	ubiquinone biosynthesis monooxygenase COQ6%2C mitochondrial
86.00	succinateCoA ligase [ADP-forming] subunit alpha-2%2C mitochone
86.00	Succinyl-CoA ligase [ADP-forming] subunit alpha-1%2C mitochondri
86.00	succinateCoA ligase [ADP-forming] subunit alpha%2C mitochondri

lastic astic

lastic

7570 se At3g47570

I-like isoform X1

ndrial

rial

rial

NODE_1236_length_304_cov_1.91189:g764.t1	NC
NODE_1236_length_304_cov_1.91189:g764.t1	ch
NODE_1236_length_304_cov_1.91189:g764.t1	NC
NODE_1243_length_304_cov_2.15859:g768.t1	NC
NODE_1243_length_304_cov_2.15859:g768.t1	ch
NODE_1243_length_304_cov_2.15859:g768.t1	NC
NODE_1250_length_303_cov_1.50885:g769.t1	NC
NODE_1250_length_303_cov_1.50885:g769.t1	ch
NODE_1250_length_303_cov_1.50885:g769.t1	NC
NODE_1261_length_302_cov_1.2:g777.t1	NC
NODE_1261_length_302_cov_1.2:g777.t1	ch
NODE_1261_length_302_cov_1.2:g777.t1	NC
NODE_1267_length_302_cov_1.38667:g781.t1	ch
NODE_1267_length_302_cov_1.38667:g781.t1	NC
NODE_1269_length_301_cov_1.32143:g783.t1	NC
NODE_1269_length_301_cov_1.32143:g783.t1	ch
NODE_1269_length_301_cov_1.32143:g783.t1	NC
NODE_1270_length_301_cov_0.986607:g784.t1	NC
NODE_1270_length_301_cov_0.986607:g784.t1	ch
NODE_1270_length_301_cov_0.986607:g784.t1	NC
NODE_1274_length_301_cov_0.910714:g785.t1	NC
NODE_1274_length_301_cov_0.910714:g785.t1	ch
NODE_1274_length_301_cov_0.910714:g785.t1	N١
NODE_1279_length_301_cov_1.45982:g789.t1	NC
NODE_1279_length_301_cov_1.45982:g789.t1	ch
NODE_1279_length_301_cov_1.45982:g789.t1	NC
NODE_1285_length_300_cov_2.30045:g794.t1	NC
NODE_1285_length_300_cov_2.30045:g794.t1	ch
NODE_1285_length_300_cov_2.30045:g794.t1	NC
NODE_1286_length_300_cov_1.97309:g795.t1	NC
NODE_1286_length_300_cov_1.97309:g795.t1	NC
NODE_1287_length_300_cov_1.82063:g796.t1	NC
NODE_1287_length_300_cov_1.82063:g796.t1	ch
NODE_1287_length_300_cov_1.82063:g796.t1	N

NC_039909.1 6e	C. arabica	54.02	1,00E-21
chr6	C. canephora	54.02	5,00E-22
NC_040040.1 6eu	C. eugenioides	54.02	8,00E-22
NC_039913.1 8c	C. arabica	56.44	8,00E-30
chr8	C. canephora	56.44	3,00E-30
NC_040042.1 8eu	C. eugenioides	54.46	5,00E-29
NC_039904.1 4c	C. arabica	30.38	3,00E-06
chr4	C. canephora	30.38	1,00E-06
NC_040045.1 11eu 11eu	C. eugenioides	29.63	2,00E-06
NC_039911.1 7e	C. arabica	54.72	5,00E-12
chr7	C. canephora	56.60	6,00E-13
NC_040041.1 7eu	C. eugenioides	56.60	1,00E-12
chr2	C. canephora	44.12	3,00E-21
NC_040036.1 2eu	C. eugenioides	44.12	1,00E-20
NC_039919.1 11e	C. arabica	34.33	6,00E-08
chr11	C. canephora	34.33	2,00E-08
NC_040045.1 11eu 11eu	C. eugenioides	34.33	3,00E-08
NC_039901.1 2e	C. arabica	48.81	7,00E-18
chr2	C. canephora	48.81	1,00E-18
NC_040036.1 2eu	C. eugenioides	48.81	4,00E-18
NC_039919.1 11e	C. arabica	76.83	2,00E-38
chr11	C. canephora	76.83	5,00E-39
NW_020863752.1 scaffold	C. eugenioides	76.83	2,00E-39
NC_039901.1 2e	C. arabica	33.33	2,00E-09
chr2	C. canephora	33.33	6,00E-10
NC_040036.1 2eu	C. eugenioides	31.87	7,00E-10
NC_039918.1 11c	C. arabica	39.78	6,00E-12
chr11	C. canephora	39.78	2,00E-12
NC_040045.1 11eu 11eu	C. eugenioides	39.78	3,00E-12
NC_039906.1 5e	C. arabica	98.59	3,00E-44
NC_040039.1 5eu	C. eugenioides	98.59	2,00E-44
NC_039912.1 8e	C. arabica	47.37	7,00E-22
chr8	C. canephora	47.37	1,00E-21
NC_040042.1 8eu	C. eugenioides	47.37	8,00E-22

84.00	S-adenosylmethionine synthase 3
84.00	S-adenosylmethionine synthase 2
84.00	S-adenosylmethionine synthase 3
100.00	elongation factor G-2%2C chloroplastic-like
100.00	Elongation factor G%2C chloroplastic
100.00	elongation factor G-2%2C chloroplastic isoform X2
77.00	aldehyde dehydrogenase family 2 member B4%2C mitochondrial-lil
77.00	Aldehyde dehydrogenase family 2 member B4%2C mitochondrial
79.00	aldehyde dehydrogenase family 2 member B7%2C mitochondrial-lil
63.00	uncharacterized protein LOC113701027
63.00	GTPase Der
63.00	uncharacterized protein LOC113778856
99.00	Putative Allantoinase
99.00	LOW QUALITY PROTEIN: uncharacterized protein LOC113763476
74.00	aldehyde dehydrogenase family 2 member B7%2C mitochondrial-lil
74.00	Aldehyde dehydrogenase family 2 member B7%2C mitochondrial
74.00	aldehyde dehydrogenase family 2 member B7%2C mitochondrial-lil
84.00	uncharacterized protein LOC113730254 isoform X2
84.00	Macro domain-containing protein XCC3184
84.00	uncharacterized protein LOC113763385
82.00	succinateCoA ligase [ADP-forming] subunit alpha-2%2C mitochone
82.00	Succinyl-CoA ligase [ADP-forming] subunit alpha-1%2C mitochondri
82.00	succinateCoA ligase [ADP-forming] subunit alpha%2C mitochondri
72.00	bifunctional phosphatase IMPL2%2C chloroplastic-like
72.00	Bifunctional phosphatase IMPL2%2C chloroplastic
90.00	bifunctional phosphatase IMPL2%2C chloroplastic
94.00	folate synthesis bifunctional protein%2C mitochondrial-like isoform
94.00	Putative Folic acid synthesis protein fol1
94.00	folate synthesis bifunctional protein%2C mitochondrial isoform X2
76.00	uncharacterized protein LOC113687576
76.00	uncharacterized protein LOC113771774
100.00	puromycin-sensitive aminopeptidase-like isoform X2
100.00	Putative Aminopeptidase N
100.00	puromycin-sensitive aminopeptidase isoform X1

ike

ike

ike

ike

ndrial rial rial

n X2

NODE_1291_length_299_cov_1.32883:g798.t1 NODE 1319 length 297 cov 1.64091:g809.t1 NODE_1319_length_297_cov_1.64091:g809.t1 NODE_1319_length_297_cov_1.64091:g809.t1 NODE_1324_length_297_cov_2:g812.t1 NODE 1324 length 297 cov 2:g812.t1 NODE 1324 length 297 cov 2:g812.t1 NODE_1334_length_296_cov_1.3379:g817.t1 NODE_1334_length_296_cov_1.3379:g817.t1 NODE_1334_length_296_cov_1.3379:g817.t1 NODE_1340_length_296_cov_1.43836:g821.t1 NODE_1340_length_296_cov_1.43836:g821.t1 NODE_1340_length_296_cov_1.43836:g821.t1 NODE_1343_length_295_cov_2.01376:g823.t1 NODE_1343_length_295_cov_2.01376:g823.t1 NODE_1343_length_295_cov_2.01376:g823.t1 NODE_1348_length_295_cov_1.9633:g828.t1 NODE_1348_length_295_cov_1.9633:g828.t1 NODE_1348_length_295_cov_1.9633:g828.t1 NODE_1372_length_293_cov_2.71759:g836.t1 NODE_1374_length_293_cov_1.36574:g837.t1 NODE_1374_length_293_cov_1.36574:g837.t1 NODE_1374_length_293_cov_1.36574:g837.t1 NODE_1377_length_293_cov_1.27315:g839.t1 NODE_1377_length_293_cov_1.27315:g839.t1 NODE_1377_length_293_cov_1.27315:g839.t1 NODE_1416_length_289_cov_1.04245:g861.t1 NODE_1416_length_289_cov_1.04245:g861.t1 NODE_1416_length_289_cov_1.04245:g861.t1 NODE_1418_length_289_cov_0.966981:g862.t1 NODE_1418_length_289_cov_0.966981:g862.t1 NODE_1418_length_289_cov_0.966981:g862.t1 NODE_1442_length_287_cov_1.7619:g877.t1 NODE_1442_length_287_cov_1.7619:g877.t1

chr11	C. canephora	47.62	9,00E-06	42.00
NC_039900.1 2c	C. arabica	37.50	9,00E-09	81.00
chr2	C. canephora	37.50	3,00E-09	81.00
NC_040043.1 9eu	C. eugenioides	37.50	5,00E-09	81.00
NC_039911.1 7e	C. arabica	47.27	3,00E-09	61.00
chr7	C. canephora	45.45	1,00E-09	61.00
NC_040041.1 7eu	C. eugenioides	45.45	2,00E-09	61.00
NC_039910.1 7c	C. arabica	36.36	3,00E-12	100.00
chr7	C. canephora	36.36	8,00E-13	100.00
NC_040041.1 7eu	C. eugenioides	36.36	1,00E-12	100.00
NC_039899.1 1e	C. arabica	45.57	1,00E-14	80.00
chr1	C. canephora	45.57	3,00E-15	80.00
NC_040035.1 1eu	C. eugenioides	45.57	7,00E-15	80.00
NC_039911.1 7e	C. arabica	43.86	1,00E-09	83.00
chr7	C. canephora	45.61	5,00E-11	83.00
NC_040041.1 7eu	C. eugenioides	45.61	1,00E-10	83.00
NC_039908.1 6c	C. arabica	57.89	2,00E-35	100.00
chr6	C. canephora	57.89	7,00E-36	100.00
NC_040040.1 6eu	C. eugenioides	57.89	1,00E-35	100.00
NC_008535.1 chloroplast	C. arabica	39.39	8,00E-15	91.00
NC_039901.1 2e	C. arabica	39.39	2,00E-09	86.00
chr2	C. canephora	37.88	2,00E-08	86.00
NC_040036.1 2eu	C. eugenioides	39.39	1,00E-09	86.00
NC_039912.1 8e	C. arabica	58.16	2,00E-31	100.00
chr8	C. canephora	56.12	8,00E-31	100.00
NC_040042.1 8eu	C. eugenioides	58.16	1,00E-31	100.00
NC_039916.1 10e	C. arabica	48.86	5,00E-18	96.00
chr10	C. canephora	48.86	1,00E-18	96.00
NC_040044.1 10eu	C. eugenioides	48.86	3,00E-18	96.00
NC_039898.1 1c	C. arabica	37.37	9,00E-11	98.00
chr1	C. canephora	38.38	2,00E-12	98.00
NC_040035.1 1eu	C. eugenioides	37.37	5,00E-11	98.00
NC_039908.1 6c	C. arabica	44.71	1,00E-19	89.00
chr6	C. canephora	44.71	3,00E-20	89.00

)	Putative Uncharacterized protein ypgQ
)	2-oxoglutarate dehydrogenase%2C mitochondrial-like
)	2-oxoglutarate dehydrogenase%2C mitochondrial
)	2-oxoglutarate dehydrogenase%2C mitochondrial-like
)	LOW QUALITY PROTEIN: NAD-dependent protein deacylase SRT2-lil
)	NAD-dependent protein deacetylase SRT2
)	NAD-dependent protein deacylase SRT2 isoform X1
00	ATP-dependent RNA helicase DEAH12%2C chloroplastic-like
00	Putative uncharacterized protein At4g01020%2C chloroplastic
00	ATP-dependent RNA helicase DEAH12%2C chloroplastic-like isoform
)	LOW QUALITY PROTEIN: 3-ketoacyl-CoA thiolase 2%2C peroxisoma
)	3-ketoacyl-CoA thiolase 2%2C peroxisomal
)	3-ketoacyl-CoA thiolase 2%2C peroxisomal
)	ABC transporter F family member 5-like
)	ABC transporter F family member 5
)	ABC transporter F family member 5
00	probable lactoylglutathione lyase%2C chloroplastic isoform X1
00	Probable lactoylglutathione lyase%2C chloroplast
00	probable lactoylglutathione lyase%2C chloroplastic isoform X2
)	NADH dehydrogenase subunit 5
)	thiamine biosynthetic bifunctional enzyme TH1%2C chloroplastic
)	Putative Thiamine biosynthesis bifunctional protein ThiED
)	thiamine biosynthetic bifunctional enzyme TH1%2C chloroplastic
00	uncharacterized protein LOC113704260
00	GMP synthase [glutamine-hydrolyzing]
00	uncharacterized protein LOC113779135
)	carbamoyl-phosphate synthase large chain%2C chloroplastic-like
)	Carbamoyl-phosphate synthase large chain
)	carbamoyl-phosphate synthase large chain%2C chloroplastic
)	LOW QUALITY PROTEIN: uncharacterized protein LOC113742966
)	Putative Malonyl-CoA-acyl carrier protein transacylase%2C mitocho
)	uncharacterized protein LOC113779717
)	probable polyribonucleotide nucleotidyltransferase 1%2C chloropla
)	Putative Polyribonucleotide nucleotidyltransferase

ike

m X2

ondrial

astic

NODE_1442_length_287_cov_1.7619:g877.t1 NODE 1443 length 287 cov 1.40476:g878.t1 NODE_1456_length_285_cov_1.41346:g885.t1 NODE_1456_length_285_cov_1.41346:g885.t1 NODE_1456_length_285_cov_1.41346:g885.t1 NODE 1457 length 285 cov 2.21154:g886.t1 NODE 1457 length 285 cov 2.21154:g886.t1 NODE_1457_length_285_cov_2.21154:g886.t1 NODE_1461_length_285_cov_1.74038:g888.t1 NODE_1461_length_285_cov_1.74038:g888.t1 NODE_1461_length_285_cov_1.74038:g888.t1 NODE_1481_length_284_cov_2.00966:g895.t1 NODE_1481_length_284_cov_2.00966:g895.t1 NODE_1481_length_284_cov_2.00966:g895.t1 NODE_1490_length_283_cov_1.7767:g901.t1 NODE_1490_length_283_cov_1.7767:g901.t1 NODE_1490_length_283_cov_1.7767:g901.t1 NODE_1493_length_283_cov_1.78641:g903.t1 NODE_1493_length_283_cov_1.78641:g903.t1 NODE_1493_length_283_cov_1.78641:g903.t1 NODE_1507_length_282_cov_1.40976:g909.t1 NODE_1507_length_282_cov_1.40976:g909.t1 NODE_1507_length_282_cov_1.40976:g909.t1 NODE_1517_length_281_cov_1.29412:g916.t1 NODE_1517_length_281_cov_1.29412:g916.t1 NODE_1517_length_281_cov_1.29412:g916.t1 NODE_1519_length_281_cov_2.83333:g918.t1 NODE_1519_length_281_cov_2.83333:g918.t1 NODE_1519_length_281_cov_2.83333:g918.t1 NODE_1540_length_280_cov_0.955665:g929.t1 NODE_1540_length_280_cov_0.955665:g929.t1 NODE_1540_length_280_cov_0.955665:g929.t1 NODE_1575_length_278_cov_1.47264:g944.t1 NODE_1575_length_278_cov_1.47264:g944.t1

NC_040040.1 6eu	C. eugenioides	43.53	9,00E-20	89.00
chr10	C. canephora	38.20	4,00E-10	87.00
NC_039905.1 4e	C. arabica	35.48	5,00E-13	96.00
chr4	C. canephora	34.41	1,00E-12	96.00
NC_040038.1 4eu	C. eugenioides	35.48	3,00E-13	96.00
NC_039919.1 11e	C. arabica	42.86	2,00E-12	67.00
chr11	C. canephora	42.86	6,00E-13	67.00
NC_040045.1 11eu 11eu	C. eugenioides	42.86	1,00E-12	67.00
NC_039900.1 2c	C. arabica	40.28	2,00E-08	70.00
chr0	C. canephora	40.28	6,00E-09	70.00
NC_040035.1 1eu	C. eugenioides	42.03	6,00E-08	65.00
NC_039912.1 8e	C. arabica	53.23	6,00E-14	81.00
chr5	C. canephora	56.45	5,00E-17	81.00
NC_040039.1 5eu	C. eugenioides	56.45	9,00E-17	81.00
NC_039898.1 1c	C. arabica	32.00	3,00E-10	92.00
chr1	C. canephora	32.00	9,00E-11	92.00
NC_040035.1 1eu	C. eugenioides	32.00	2,00E-10	92.00
NC_039901.1 2e	C. arabica	57.41	3,00E-14	100.0
chr2	C. canephora	57.41	1,00E-14	100.0
NC_040036.1 2eu	C. eugenioides	57.41	2,00E-14	100.0
NC_039901.1 2e	C. arabica	41.25	1,00E-10	84.00
chr0	C. canephora	41.25	5,00E-11	84.00
NC_040036.1 2eu	C. eugenioides	41.25	8,00E-11	84.00
NC_039917.1 10c	C. arabica	51.09	2,00E-24	98.00
chr10	C. canephora	50.00	7,00E-24	98.00
NC_040044.1 10eu	C. eugenioides	51.09	1,00E-24	98.00
NC_039911.1 7e	C. arabica	47.19	2,00E-22	95.00
chr7	C. canephora	47.19	7,00E-23	95.00
NC_040041.1 7eu	C. eugenioides	47.19	1,00E-22	95.00
NC_039904.1 4c	C. arabica	51.85	4,00E-20	97.00
chr4	C. canephora	51.85	1,00E-20	97.00
NC_040038.1 4eu	C. eugenioides	51.85	2,00E-20	97.00
NC_039916.1 10e	C. arabica	98.91	4,00E-47	100.0
chr10	C. canephora	98.91	1,00E-47	100.0

39.00	probable polyribonucleotide nucleotidyltransferase 1%2C chloro
37.00	Probable beta-D-xylosidase 5
96.00	uncharacterized protein LOC113741957
96.00	Putative Uncharacterized oxidoreductase ygbJ
96.00	uncharacterized protein LOC113768766
57.00	3-oxoacyl-[acyl-carrier-protein] reductase 4
57.00	3-oxoacyl-[acyl-carrier-protein] reductase%2C chloroplastic
57.00	3-oxoacyl-[acyl-carrier-protein] reductase 4
0.00	ATP-dependent DNA helicase SRS2-like protein At4g25120 isofor
0.00	Putative ATP-dependent DNA helicase pcrA
5.00	ATP-dependent DNA helicase SRS2-like protein At4g25120
31.00	uncharacterized protein LOC113704029
31.00	Translation initiation factor IF-2%2C chloroplastic
31.00	translation initiation factor IF-2%2C chloroplastic
92.00	uncharacterized protein LOC113731733
92.00	Putative ATP-dependent DNA helicase recQ
2.00	uncharacterized protein LOC113781413
00.00	intermediate cleaving peptidase 55%2C mitochondrial-like
00.00	Putative Probable Xaa-Pro aminopeptidase 3
00.00	intermediate cleaving peptidase 55%2C mitochondrial
34.00	ABC transporter G family member 8-like
34.00	ABC transporter G family member 8
34.00	ABC transporter G family member 8
98.00	uncharacterized protein LOC113713612
98.00	Putative tRNA modification GTPase MnmE
98.00	uncharacterized protein LOC113749318
95.00	lysinetRNA ligase%2C cytoplasmic-like isoform X2
95.00	LysinetRNA ligase
95.00	lysinetRNA ligase isoform X2
7.00	glycerol kinase-like
7.00	Glycerol kinase
97.00	glycerol kinase
00.00	DEAD-box ATP-dependent RNA helicase 21-like
00.00	DEAD-box ATP-dependent RNA helicase 21

oplastic

orm X2

NODE_1575_length_278_cov_1.47264:g944.t1 NODE 1576 length 278 cov 1.10448:g945.t1 NODE 1576 length 278 cov 1.10448:g945.t1 NODE_1576_length_278_cov_1.10448:g945.t1 NODE_1589_length_278_cov_2.87562:g950.t1 NODE 1589 length 278 cov 2.87562:g950.t1 NODE 1590 length 278 cov 1.42786:g951.t1 NODE_1590_length_278_cov_1.42786:g951.t1 NODE_1590_length_278_cov_1.42786:g951.t1 NODE_1599_length_277_cov_2.1:g956.t1 NODE 1599 length 277 cov 2.1:g956.t1 NODE_1599_length_277_cov_2.1:g956.t1 NODE_1604_length_277_cov_1.46:g958.t1 NODE_1604_length_277_cov_1.46:g958.t1 NODE_1604_length_277_cov_1.46:g958.t1 NODE_1609_length_277_cov_1.47:g962.t1 NODE_1609_length_277_cov_1.47:g962.t1 NODE_1609_length_277_cov_1.47:g962.t1 NODE_1628_length_276_cov_0.743719:g972.t1 NODE_1628_length_276_cov_0.743719:g972.t1 NODE_1628_length_276_cov_0.743719:g972.t1 NODE_1636_length_276_cov_1.0804:g977.t1 NODE_1636_length_276_cov_1.0804:g977.t1 NODE_1636_length_276_cov_1.0804:g977.t1 NODE_1637_length_276_cov_1.47739:g978.t1 NODE_1637_length_276_cov_1.47739:g978.t1 NODE_1637_length_276_cov_1.47739:g978.t1 NODE_1644_length_276_cov_1.75879:g980.t1 NODE_1644_length_276_cov_1.75879:g980.t1 NODE_1644_length_276_cov_1.75879:g980.t1 NODE_1647_length_276_cov_1.11558:g981.t1 NODE_1647_length_276_cov_1.11558:g981.t1 NODE_1647_length_276_cov_1.11558:g981.t1 NODE_1665_length_275_cov_0.742424:g989.t1

NC_040044.1 10eu	C. eugenioides	98.91	2,00E-47
NC_039905.1 4e	C. arabica	47.37	7,00E-20
chr4	C. canephora	47.37	4,00E-20
NC_040038.1 4eu	C. eugenioides	47.37	6,00E-20
NC_039901.1 2e	C. arabica	60.76	8,00E-26
NC_040036.1 2eu	C. eugenioides	62.03	1,00E-26
NC_039910.1 7c	C. arabica	42.03	7,00E-08
chr7	C. canephora	42.03	1,00E-08
NC_040041.1 7eu	C. eugenioides	42.03	3,00E-08
NC_039911.1 7e	C. arabica	42.37	3,00E-10
chr7	C. canephora	40.68	3,00E-10
NC_040041.1 7eu	C. eugenioides	40.68	5,00E-10
NC_039912.1 8e	C. arabica	53.26	3,00E-20
chr8	C. canephora	53.26	9,00E-21
NC_040042.1 8eu	C. eugenioides	53.26	2,00E-20
NC_039905.1 4e	C. arabica	49.21	2,00E-12
chr4	C. canephora	49.21	5,00E-13
NC_040038.1 4eu	C. eugenioides	47.83	1,00E-12
NC_039917.1 10c	C. arabica	61.54	3,00E-28
chr10	C. canephora	61.54	3,00E-29
NC_040044.1 10eu	C. eugenioides	61.54	2,00E-28
NC_039914.1 9c	C. arabica	37.63	4,00E-08
chr0	C. canephora	37.63	9,00E-09
NC_040039.1 5eu	C. eugenioides	39.08	2,00E-08
NC_039901.1 2e	C. arabica	57.14	3,00E-23
chr2	C. canephora	57.14	9,00E-24
NC_040036.1 2eu	C. eugenioides	57.14	2,00E-23
NC_039910.1 7c	C. arabica	40.24	9,00E-11
chr7	C. canephora	40.24	3,00E-11
NC_040036.1 2eu	C. eugenioides	40.24	1,00E-10
NC_039905.1 4e	C. arabica	52.50	6,00E-08
chr4	C. canephora	52.50	2,00E-08
NC_040038.1 4eu	C. eugenioides	52.50	3,00E-08
NC_039909.1 6e	C. arabica	100.00	8,00E-33

100.00	DEAD-box ATP-dependent RNA helicase 21-like
83.00	probable GTP diphosphokinase RSH2%2C chloroplastic isoform X1
83.00	RELA/SPOT homolog 3
83.00	probable GTP diphosphokinase RSH2%2C chloroplastic
85.00	uncharacterized protein LOC113728817
85.00	uncharacterized protein LOC113759417
75.00	uncharacterized protein LOC113698054
75.00	Putative IMPACT family member HI_0722
75.00	uncharacterized protein LOC113778220
92.00	ABC transporter F family member 5-like
92.00	ABC transporter F family member 5
92.00	ABC transporter F family member 5
98.00	uncharacterized protein LOC113704029
98.00	Putative Translation initiation factor IF-2%2C mitochondrial
98.00	uncharacterized protein LOC113781276
71.00	ABC transporter A family member 2-like isoform X3
71.00	ABC transporter A family member 2
76.00	ABC transporter A family member 2-like
85.00	CLP protease regulatory subunit CLPX3%2C mitochondrial-like isofo
85.00	ATP-dependent Clp protease
85.00	CLP protease regulatory subunit CLPX3%2C mitochondrial isoform X
100.00	ABC transporter B family member 9-like
100.00	ABC transporter B family member 9
94.00	ABC transporter G family member 10
100.00	50S ribosomal protein L1%2C chloroplastic-like
100.00	50S ribosomal protein L1%2C chloroplastic
100.00	50S ribosomal protein L1%2C chloroplastic
97.00	uncharacterized protein LOC113697941 isoform X1
97.00	Putative Methionyl-tRNA formyltransferase
97.00	uncharacterized protein LOC113760375
51.00	putative D-cysteine desulfhydrase 1%2C mitochondrial
51.00	Putative 1-aminocyclopropane-1-carboxylate deaminase
51.00	putative D-cysteine desulfhydrase 1%2C mitochondrial
100.00	uncharacterized protein LOC113696623

orm X2

X2

NODE_1665_length_275_cov_0.742424:g989.t1
NODE_1665_length_275_cov_0.742424:g989.t1
NODE_1668_length_275_cov_1.48485:g991.t1
NODE_1668_length_275_cov_1.48485:g991.t1
NODE_1691_length_274_cov_1.50254:g1003.t1
NODE_1691_length_274_cov_1.50254:g1003.t1
NODE_1691_length_274_cov_1.50254:g1003.t1
NODE_1694_length_274_cov_0.746193:g1004.t1
NODE_1694_length_274_cov_0.746193:g1004.t1
NODE_1694_length_274_cov_0.746193:g1004.t1
NODE_1701_length_274_cov_2.19289:g1008.t1
NODE_1747_length_272_cov_1.50769:g1027.t1
NODE_1747_length_272_cov_1.50769:g1027.t1
NODE_1747_length_272_cov_1.50769:g1027.t1
NODE_1776_length_271_cov_1.13402:g1042.t1
NODE_1776_length_271_cov_1.13402:g1042.t1
NODE_1777_length_271_cov_1.13918:g1043.t1
NODE_1777_length_271_cov_1.13918:g1043.t1
NODE_1777_length_271_cov_1.13918:g1043.t1
NODE_1782_length_271_cov_0.762887:g1045.t1
NODE_1782_length_271_cov_0.762887:g1045.t1
NODE_1782_length_271_cov_0.762887:g1045.t1
NODE_1794_length_270_cov_1.87047:g1051.t1
NODE_1794_length_270_cov_1.87047:g1051.t1
NODE_1794_length_270_cov_1.87047:g1051.t1
NODE_1804_length_270_cov_0.766839:g1055.t1
NODE_1804_length_270_cov_0.766839:g1055.t1
NODE_1804_length_270_cov_0.766839:g1055.t1
NODE_1807_length_270_cov_0.761658:g1058.t1
NODE_1807_length_270_cov_0.761658:g1058.t1
NODE_1807_length_270_cov_0.761658:g1058.t1
NODE_1824_length_269_cov_1.54167:g1066.t1
NODE_1824_length_269_cov_1.54167:g1066.t1
NODE_1824_length_269_cov_1.54167:g1066.t1

chr10	C. canephora	62.26	3,00E-18	98.00
NC_040040.1 6eu	C. eugenioides	100.00	4,00E-33	100.00
NC_039919.1 11e	C. arabica	32.35	3,00E-08	100.00
NC_040045.1 11eu 11eu	C. eugenioides	32.35	1,00E-08	100.00
NC_039919.1 11e	C. arabica	34.72	4,00E-09	85.00
chr11	C. canephora	34.72	2,00E-09	85.00
NC_040045.1 11eu 11eu	C. eugenioides	34.72	2,00E-09	85.00
NC_039912.1 8e	C. arabica	83.72	6,00E-45	97.00
chr8	C. canephora	83.72	5,00E-47	97.00
NC_040042.1 8eu	C. eugenioides	83.72	3,00E-45	97.00
chr8	C. canephora	42.62	2,00E-07	66.00
NC_039906.1 5e	C. arabica	38.37	1,00E-17	95.00
chr5	C. canephora	38.37	3,00E-18	95.00
NC_040039.1 5eu	C. eugenioides	38.37	6,00E-18	95.00
NC_039903.1 3e	C. arabica	38.64	7,00E-09	92.00
chr3	C. canephora	42.05	3,00E-06	92.00
NC_039919.1 11e	C. arabica	50.56	9,00E-25	98.00
chr11	C. canephora	50.56	3,00E-25	98.00
NW_020862338.1 scaffold	C. eugenioides	50.56	5,00E-25	98.00
NC_039919.1 11e	C. arabica	100.00	9,00E-29	100.00
chr11	C. canephora	93.88	2,00E-27	100.00
NC_040045.1 11eu 11eu	C. eugenioides	100.00	5,00E-29	100.00
NC_039900.1 2c	C. arabica	58.54	2,00E-12	100.00
chr2	C. canephora	56.10	3,00E-12	100.00
NC_040036.1 2eu	C. eugenioides	56.10	4,00E-12	100.00
NC_039900.1 2c	C. arabica	50.57	3,00E-23	97.00
chr2	C. canephora	50.57	1,00E-23	97.00
NC_040036.1 2eu	C. eugenioides	50.57	2,00E-23	97.00
NC_039904.1 4c	C. arabica	52.54	2,00E-15	65.00
chr6	C. canephora	51.67	1,00E-15	66.00
NC_040040.1 6eu	C. eugenioides	51.67	2,00E-15	66.00
NC_039901.1 2e	C. arabica	54.84	1,00E-17	80.00
chr2	C. canephora	54.84	4,00E-18	80.00
NC_040036.1 2eu	C. eugenioides	54.84	9,00E-18	80.00

00	Putative Probable LRR receptor-like serine/threonine-protein kinas
0.00	uncharacterized protein LOC113774031
0.00	protein lojap-related%2C mitochondrial
0.00	protein lojap-related%2C mitochondrial
00	glyceraldehyde-3-phosphate dehydrogenase 2%2C cytosolic
00	Glyceraldehyde-3-phosphate dehydrogenase%2C cytosolic
00	glyceraldehyde-3-phosphate dehydrogenase 2%2C cytosolic
00	puromycin-sensitive aminopeptidase-like isoform X1
00	Peptidase M1 family protein
00	puromycin-sensitive aminopeptidase isoform X1
00	Phosphorylase superfamily protein
00	uroporphyrinogen decarboxylase 1%2C chloroplastic-like
00	Uroporphyrinogen decarboxylase 1%2C chloroplastic
00	uroporphyrinogen decarboxylase 1%2C chloroplastic isoform X2
00	GTP-binding protein OBGC%2C chloroplastic
00	Putative GTPase obg
00	biotin carboxylase 1%2C chloroplastic-like
00	Biotin carboxylase 1%2C chloroplastic
00	biotin carboxylase 1%2C chloroplastic
0.00	putative late blight resistance protein homolog R1A-4
0.00	Putative Disease resistance protein (CC-NBS-LRR class) family
0.00	putative late blight resistance protein homolog R1A-4
0.00	glutaminefructose-6-phosphate aminotransferase [isomerizing] 2
0.00	Glucosaminefructose-6-phosphate aminotransferase [isomerizing
0.00	glutaminefructose-6-phosphate aminotransferase [isomerizing] 2
00	LOW QUALITY PROTEIN: riboflavin biosynthesis protein PYRD%2C of
00	Putative Riboflavin biosynthesis protein RibD
00	riboflavin biosynthesis protein PYRD%2C chloroplastic
00	DNA gyrase subunit B%2C chloroplastic/mitochondrial-like
00	DNA gyrase subunit B%2C chloroplastic/mitochondrial
00	DNA gyrase subunit B%2C chloroplastic/mitochondrial-like
00	aspartatetRNA ligase%2C chloroplastic/mitochondrial isoform X1
00	AspartatetRNA ligase
00	aspartatetRNA ligase%2C chloroplastic/mitochondrial isoform X4

ase At4g08850

2-like ng] 2

chloroplastic-like

NODE_1840_length_268_cov_1.54974:g1071.t1	NC_039915.1 9e	C. arabica	40.00	2,00E-10	96.00	dihydropyrimidinase-like isoform X2
NODE_1840_length_268_cov_1.54974:g1071.t1	chr0	C. canephora	40.00	3,00E-09	96.00	Putative Dihydropyrimidinase
NODE_1840_length_268_cov_1.54974:g1071.t1	NC_040038.1 4eu	C. eugenioides	40.00	1,00E-10	96.00	LOW QUALITY PROTEIN: dihydropyrimidinase-like
NODE_1845_length_268_cov_1.90576:g1073.t1	NC_039900.1 2c	C. arabica	38.64	6,00E-13	100.00	4-hydroxy-tetrahydrodipicolinate synthase%2C chloroplastic-like
NODE_1845_length_268_cov_1.90576:g1073.t1	chr0	C. canephora	38.64	2,00E-13	100.00	Dihydrodipicolinate synthase%2C chloroplastic
NODE_1845_length_268_cov_1.90576:g1073.t1	NC_040036.1 2eu	C. eugenioides	38.64	3,00E-13	100.00	4-hydroxy-tetrahydrodipicolinate synthase%2C chloroplastic-like
NODE_1880_length_267_cov_2.25263:g1093.t1	NC_039912.1 8e	C. arabica	52.63	9,00E-24	98.00	uncharacterized protein LOC113704260
NODE_1880_length_267_cov_2.25263:g1093.t1	chr8	C. canephora	52.63	4,00E-24	98.00	GMP synthase [glutamine-hydrolyzing]
NODE_1880_length_267_cov_2.25263:g1093.t1	NC_040042.1 8eu	C. eugenioides	52.63	5,00E-24	98.00	uncharacterized protein LOC113779135
NODE_1882_length_266_cov_1.16931:g1094.t1	NC_039916.1 10e	C. arabica	42.25	6,00E-10	85.00	carbamoyl-phosphate synthase large chain%2C chloroplastic-like
NODE_1882_length_266_cov_1.16931:g1094.t1	chr10	C. canephora	42.25	2,00E-10	85.00	Carbamoyl-phosphate synthase large chain
NODE_1882_length_266_cov_1.16931:g1094.t1	NC_040044.1 10eu	C. eugenioides	42.25	4,00E-10	85.00	carbamoyl-phosphate synthase large chain%2C chloroplastic
NODE_1898_length_266_cov_1.55556:g1101.t1	NC_039901.1 2e	C. arabica	49.44	4,00E-23	100.00	serinetRNA ligase-like
NODE_1898_length_266_cov_1.55556:g1101.t1	chr2	C. canephora	49.44	1,00E-23	100.00	SerinetRNA ligase
NODE_1898_length_266_cov_1.55556:g1101.t1	NC_040036.1 2eu	C. eugenioides	49.44	2,00E-23	100.00	serinetRNA ligase
NODE_1899_length_266_cov_0.772487:g1102.t1	NC_039905.1 4e	C. arabica	48.24	1,00E-14	95.00	aldehyde dehydrogenase family 2 member B4%2C mitochondrial-like
NODE_1899_length_266_cov_0.772487:g1102.t1	chr4	C. canephora	48.24	4,00E-15	95.00	Aldehyde dehydrogenase family 2 member B4%2C mitochondrial
NODE_1899_length_266_cov_0.772487:g1102.t1	NC_040038.1 4eu	C. eugenioides	48.24	7,00E-15	95.00	aldehyde dehydrogenase family 2 member B4%2C mitochondrial-like
NODE_1901_length_266_cov_1.93651:g1104.t1	NC_039909.1 6e	C. arabica	35.16	2,00E-08	93.00	uncharacterized protein LOC113694619
NODE_1901_length_266_cov_1.93651:g1104.t1	chr6	C. canephora	35.16	7,00E-09	93.00	Putative UPF0098 protein MTH_273
NODE_1901_length_266_cov_1.93651:g1104.t1	NC_040040.1 6eu	C. eugenioides	35.16	1,00E-08	93.00	uncharacterized protein LOC113776159
NODE_1921_length_265_cov_1.48936:g1114.t1	NC_039919.1 11e	C. arabica	28.24	6,00E-10	97.00	LOW QUALITY PROTEIN: methylenetetrahydrofolate reductase 1-like
NODE_1921_length_265_cov_1.48936:g1114.t1	NW_020863270.1 scaffold	C. eugenioides	28.24	9,00E-10	97.00	methylenetetrahydrofolate reductase 2-like
NODE_1937_length_264_cov_1.17647:g1120.t1	NC_039909.1 6e	C. arabica	46.91	2,00E-19	93.00	acetate/butyrateCoA ligase AAE7%2C peroxisomal-like
NODE_1937_length_264_cov_1.17647:g1120.t1	chr0	C. canephora	46.91	7,00E-20	93.00	Acetate/butyrateCoA ligase AAE7%2C peroxisomal
NODE_1937_length_264_cov_1.17647:g1120.t1	NC_040037.1 3eu	C. eugenioides	46.91	2,00E-19	93.00	acetate/butyrateCoA ligase AAE7%2C peroxisomal
NODE_1940_length_264_cov_1.58289:g1122.t1	NC_039911.1 7e	C. arabica	48.28	9,00E-17	100.00	geranylgeranyl pyrophosphate synthase 7%2C chloroplastic-like
NODE_1940_length_264_cov_1.58289:g1122.t1	chr7	C. canephora	47.13	9,00E-17	100.00	Geranylgeranyl pyrophosphate synthase%2C chloroplastic
NODE_1940_length_264_cov_1.58289:g1122.t1	NC_040041.1 7eu	C. eugenioides	47.13	2,00E-16	100.00	geranylgeranyl pyrophosphate synthase 7%2C chloroplastic-like
NODE_1943_length_264_cov_1.55615:g1124.t1	NC_039918.1 11c	C. arabica	41.10	6,00E-10	88.00	nicotinate-nucleotide pyrophosphorylase [carboxylating]%2C chloropla
NODE_1943_length_264_cov_1.55615:g1124.t1	chr11	C. canephora	41.10	2,00E-10	88.00	Putative Probable nicotinate-nucleotide pyrophosphorylase [carboxyla
NODE_1943_length_264_cov_1.55615:g1124.t1	NC_040045.1 11eu 11eu	C. eugenioides	41.10	3,00E-10	88.00	nicotinate-nucleotide pyrophosphorylase [carboxylating]%2C chloropla
NODE_1949_length_263_cov_1.5914:g1127.t1	NC_039914.1 9c	C. arabica	40.00	1,00E-06	91.00	protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic-like
NODE_1949_length_263_cov_1.5914:g1127.t1	chr9	C. canephora	40.00	4,00E-07	91.00	Protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic

oplastic-like (ylating] oplastic

NODE_1949_length_263_cov_1.5914:g1127.t1 NODE 1960 length 263 cov 2.03226:g1133.t1 NODE_1960_length_263_cov_2.03226:g1133.t1 NODE_1960_length_263_cov_2.03226:g1133.t1 NODE_1966_length_262_cov_0.794595:g1137.t1 NODE 1966 length 262 cov 0.794595:g1137.t1 NODE 1966 length 262 cov 0.794595:g1137.t1 NODE_1974_length_262_cov_1.2:g1143.t1 NODE_1974_length_262_cov_1.2:g1143.t1 NODE_1974_length_262_cov_1.2:g1143.t1 NODE_1997_length_261_cov_1.19565:g1157.t1 NODE_1997_length_261_cov_1.19565:g1157.t1 NODE_1997_length_261_cov_1.19565:g1157.t1 NODE_2008_length_261_cov_1.58696:g1162.t1 NODE_2008_length_261_cov_1.58696:g1162.t1 NODE_2008_length_261_cov_1.58696:g1162.t1 NODE_2019_length_260_cov_2:g1169.t1 NODE_2029_length_260_cov_2.39891:g1174.t1 NODE_2029_length_260_cov_2.39891:g1174.t1 NODE_2029_length_260_cov_2.39891:g1174.t1 NODE_2033_length_260_cov_0.803279:g1175.t1 NODE_2033_length_260_cov_0.803279:g1175.t1 NODE_2033_length_260_cov_0.803279:g1175.t1 NODE_2038_length_260_cov_0.808743:g1177.t1 NODE_2038_length_260_cov_0.808743:g1177.t1 NODE_2038_length_260_cov_0.808743:g1177.t1 NODE_2048_length_259_cov_1.59341:g1180.t1 NODE_2048_length_259_cov_1.59341:g1180.t1 NODE_2048_length_259_cov_1.59341:g1180.t1 NODE_2053_length_259_cov_1.61538:g1182.t1 NODE_2053_length_259_cov_1.61538:g1182.t1 NODE_2053_length_259_cov_1.61538:g1182.t1 NODE_2063_length_259_cov_1.83516:g1186.t1 NODE_2063_length_259_cov_1.83516:g1186.t1

NC_040043.1 9eu	C. eugenioides	40.00	7,00E-07	91.00
NC_039909.1 6e	C. arabica	47.50	2,00E-19	90.00
chr6	C. canephora	46.25	1,00E-18	90.00
NC_040040.1 6eu	C. eugenioides	47.50	9,00E-20	90.00
NC_039903.1 3e	C. arabica	42.68	1,00E-18	94.00
chr3	C. canephora	41.46	3,00E-18	94.00
NC_040037.1 3eu	C. eugenioides	42.68	3,00E-19	94.00
NC_039916.1 10e	C. arabica	53.12	2,00E-21	96.00
chr10	C. canephora	55.74	5,00E-22	92.00
NC_040044.1 10eu	C. eugenioides	55.74	9,00E-22	92.00
NC_039904.1 4c	C. arabica	44.16	1,00E-13	100.0
chr4	C. canephora	44.16	4,00E-14	100.0
NC_040038.1 4eu	C. eugenioides	44.16	6,00E-14	100.0
NC_039901.1 2e	C. arabica	41.43	5,00E-15	85.00
chr2	C. canephora	41.43	4,00E-15	85.00
NC_040036.1 2eu	C. eugenioides	41.43	3,00E-15	85.00
NC_008535.1 chloroplast	C. arabica	69.77	3,00E-34	100.0
NC_039914.1 9c	C. arabica	42.50	2,00E-11	95.00
chr9	C. canephora	42.50	5,00E-12	95.00
NC_040043.1 9eu	C. eugenioides	42.50	9,00E-12	95.00
NC_039900.1 2c	C. arabica	59.02	4,00E-17	70.00
chr2	C. canephora	59.02	1,00E-17	70.00
NC_040036.1 2eu	C. eugenioides	59.02	3,00E-17	70.00
NC_039906.1 5e	C. arabica	98.82	1,00E-56	100.0
chr5	C. canephora	95.29	3,00E-54	100.0
NC_040039.1 5eu	C. eugenioides	98.82	8,00E-57	100.0
NC_039911.1 7e	C. arabica	56.99	7,00E-30	100.0
chr7	C. canephora	56.99	2,00E-30	100.0
NC_040045.1 11eu 11eu	C. eugenioides	58.06	3,00E-30	100.0
NC_039909.1 6e	C. arabica	37.35	5,00E-12	94.00
chr6	C. canephora	37.35	2,00E-12	94.00
NC_040040.1 6eu	C. eugenioides	37.35	3,00E-12	94.00
NC_039904.1 4c	C. arabica	100.00	3,00E-55	100.0
chr4	C. canephora	100.00	1,00E-55	100.0

)	protein TRIGALACTOSYLDIACYLGLYCEROL 3%2C chloroplastic
)	argininetRNA ligase%2C cytoplasmic-like isoform X1
)	Putative ArgininetRNA ligase
)	argininetRNA ligase%2C cytoplasmic-like isoform X1
)	LOW QUALITY PROTEIN: primary amine oxidase-like
)	Primary amine oxidase
)	primary amine oxidase-like
)	uncharacterized protein LOC113712290 isoform X1
)	UPF0047 protein yjbQ
)	uncharacterized protein LOC113750884 isoform X2
00	betaine aldehyde dehydrogenase 1%2C chloroplastic-like
00	Betaine aldehyde dehydrogenase 1%2C chloroplastic
00	betaine aldehyde dehydrogenase 1%2C chloroplastic-like
)	intermediate cleaving peptidase 55%2C mitochondrial-like
)	Putative Probable Xaa-Pro aminopeptidase 3
)	intermediate cleaving peptidase 55%2C mitochondrial
00	ATP synthase CF1 alpha subunit
)	probable 3-hydroxyisobutyrate dehydrogenase%2C mitochondrial i
)	Probable 3-hydroxyisobutyrate dehydrogenase%2C mitochondrial
)	probable 3-hydroxyisobutyrate dehydrogenase%2C mitochondrial i
)	NAD(P)H dehydrogenase (quinone) FQR1-like
)	Flavoprotein WrbA
)	NAD(P)H dehydrogenase (quinone) FQR1-like
00	fatty acid desaturase 4%2C chloroplastic-like
00	fatty acid desaturase A
00	fatty acid desaturase 4%2C chloroplastic-like
00	chaperone protein ClpB3%2C chloroplastic-like
00	Chaperone protein ClpB3%2C chloroplastic
00	chaperone protein ClpB3%2C chloroplastic
)	ferredoxin-dependent glutamate synthase%2C chloroplastic-like
)	Ferredoxin-dependent glutamate synthase 1%2C chloroplastic
)	ferredoxin-dependent glutamate synthase%2C chloroplastic
00	uncharacterized protein LOC113739892 isoform X1
00	unknown protein%3B FUNCTIONS IN

al isoform X1

al isoform X1

NODE_2063_length_259_cov_1.83516:g1186.t1
NODE_2090_length_258_cov_1.70166:g1197.t1
NODE_2090_length_258_cov_1.70166:g1197.t1
NODE_2107_length_257_cov_1.63333:g1209.t1
NODE_2112_length_257_cov_0.9666667:g1212.t1
NODE_2112_length_257_cov_0.9666667:g1212.t1
NODE_2112_length_257_cov_0.9666667:g1212.t1
NODE_2127_length_256_cov_1.65363:g1220.t1
NODE_2127_length_256_cov_1.65363:g1220.t1
NODE_2127_length_256_cov_1.65363:g1220.t1
NODE_2135_length_256_cov_1.64246:g1225.t1
NODE_2135_length_256_cov_1.64246:g1225.t1
NODE_2135_length_256_cov_1.64246:g1225.t1
NODE_2139_length_256_cov_2.41341:g1230.t1
NODE_2139_length_256_cov_2.41341:g1230.t1
NODE_2139_length_256_cov_2.41341:g1230.t1
NODE_2162_length_255_cov_1.6236:g1243.t1
NODE_2162_length_255_cov_1.6236:g1243.t1
NODE_2162_length_255_cov_1.6236:g1243.t1
NODE_2166_length_255_cov_1.64045:g1245.t1
NODE_2166_length_255_cov_1.64045:g1245.t1
NODE_2186_length_254_cov_1.24294:g1249.t1
NODE_2186_length_254_cov_1.24294:g1249.t1
NODE_2186_length_254_cov_1.24294:g1249.t1
NODE_2187_length_254_cov_1.41243:g1250.t1
NODE_2187_length_254_cov_1.41243:g1250.t2
NODE_2187_length_254_cov_1.41243:g1250.t1
NODE_2187_length_254_cov_1.41243:g1250.t2
NODE_2187_length_254_cov_1.41243:g1250.t1
NODE_2187_length_254_cov_1.41243:g1250.t2
NODE_2200_length_253_cov_1.25:g1255.t1
NODE_2200_length_253_cov_1.25:g1255.t1
NODE_2200_length_253_cov_1.25:g1255.t1
NODE_2207_length_253_cov_1.68182:g1257.t1

NC_040038.1 4eu	C. eugenioides	98.84	9,00E-55	100.
NC_039919.1 11e	C. arabica	100.00	3,00E-38	100.
NC_040045.1 11eu 11eu	C. eugenioides	98.78	8,00E-38	100.
chr2	C. canephora	41.38	7,00E-07	100.
NC_039917.1 10c	C. arabica	41.67	1,00E-13	91.0
chr10	C. canephora	41.67	4,00E-14	91.0
NC_040044.1 10eu	C. eugenioides	41.67	2,00E-13	91.0
NC_039905.1 4e	C. arabica	45.45	3,00E-09	96.0
chr4	C. canephora	45.45	9,00E-10	96.0
NC_040038.1 4eu	C. eugenioides	47.06	1,00E-09	94.0
NC_039905.1 4e	C. arabica	44.05	4,00E-15	97.0
chr4	C. canephora	44.05	2,00E-15	97.0
NC_040038.1 4eu	C. eugenioides	44.05	3,00E-15	97.0
NC_039905.1 4e	C. arabica	43.48	7,00E-11	79.0
chr4	C. canephora	43.48	2,00E-11	79.0
NC_040038.1 4eu	C. eugenioides	43.48	4,00E-11	79.0
NC_039900.1 2c	C. arabica	41.18	2,00E-07	80.0
chr2	C. canephora	41.18	6,00E-08	80.0
NC_040036.1 2eu	C. eugenioides	41.18	1,00E-07	80.0
chr3	C. canephora	45.83	1,00E-07	87.0
NC_040037.1 3eu	C. eugenioides	47.92	5,00E-08	87.0
NC_039915.1 9e	C. arabica	52.87	1,00E-24	98.0
chr9	C. canephora	52.87	4,00E-25	98.0
NC_040043.1 9eu	C. eugenioides	52.87	7,00E-25	98.0
NC_039914.1 9c	C. arabica	49.37	2,00E-21	96.0
NC_039914.1 9c	C. arabica	49.37	2,00E-21	96.0
chr9	C. canephora	49.37	7,00E-22	96.0
chr9	C. canephora	49.37	7,00E-22	96.0
NC_040043.1 9eu	C. eugenioides	49.37	1,00E-21	96.0
NC_040043.1 9eu	C. eugenioides	49.37	1,00E-21	96.0
NC_039908.1 6c	C. arabica	37.29	1,00E-08	71.0
chr6	C. canephora	40.74	4,00E-09	65.0
NC_040040.1 6eu	C. eugenioides	37.29	6,00E-09	71.0
NC_039903.1 3e	C. arabica	46.67	2,00E-15	100.

uncharacterized protein LOC113768344 isoform X1 .00 .00 uncharacterized protein LOC113718104 .00 uncharacterized protein LOC113751355 .00 Nudix hydrolase 15%2C mitochondrial 00 gamma carbonic anhydrase 1%2C mitochondrial-like Gamma carbonic anhydrase 1%2C mitochondrial 00 gamma carbonic anhydrase 1%2C mitochondrial)0 4-hydroxybenzoate polyprenyltransferase%2C mitochondrial-like 00 4-hydroxybenzoate polyprenyltransferase%2C mitochondrial າດ 4-hydroxybenzoate geranyltransferase 2-like 00 acetylornithine aminotransferase%2C mitochondrial-like 00 Acetylornithine aminotransferase%2C mitochondrial 00 acetylornithine aminotransferase%2C mitochondrial 00 00 ABC transporter A family member 7-like ABC transporter A family member 7 00 ABC transporter A family member 7-like 00 LOW QUALITY PROTEIN: transketolase%2C chloroplastic-like 00 Transketolase%2C chloroplastic 00 transketolase%2C chloroplastic າດ Probable uridine nucleosidase 2 probable uridine nucleosidase 2 leucine--tRNA ligase%2C chloroplastic/mitochondrial-like 00 Leucine--tRNA ligase 00 leucine--tRNA ligase%2C chloroplastic/mitochondrial 00 00 peptide chain release factor PrfB1%2C chloroplastic isoform X2 peptide chain release factor PrfB1%2C chloroplastic isoform X2 00 Peptide chain release factor 2 00 00 Peptide chain release factor 2 n peptide chain release factor PrfB1%2C chloroplastic peptide chain release factor PrfB1%2C chloroplastic 0 LOW QUALITY PROTEIN: ABC transporter A family member 1-like 00 00 ABC transporter A family member 1 ABC transporter A family member 1 isoform X2 00 glutathione reductase%2C chloroplastic .00

NODE_2207_length_253_cov_1.68182:g1257.t1	chr1	C. canephora	55.00	7,00E-16	80.00	Glutathione reductase%2C chloroplastic (Fragment)
NODE_2207_length_253_cov_1.68182:g1257.t1	NC_040037.1 3eu	C. eugenioides	47.95	1,00E-15	97.00	glutathione reductase%2C chloroplastic
NODE_2214_length_252_cov_1.68:g1259.t1	NC_039917.1 10c	C. arabica	45.00	8,00E-08	71.00	probable beta-D-xylosidase 7
NODE_2214_length_252_cov_1.68:g1259.t1	chr10	C. canephora	45.00	3,00E-08	71.00	Probable beta-D-xylosidase 7
NODE_2214_length_252_cov_1.68:g1259.t1	NC_040044.1 10eu	C. eugenioides	45.00	5,00E-08	71.00	probable beta-D-xylosidase 7
NODE_2257_length_250_cov_2.18497:g1280.t1	chr3	C. canephora	36.54	5,00E-07	62.00	Putative 30S ribosomal protein S1
NODE_2275_length_250_cov_1.68208:g1286.t1	NC_039918.1 11c	C. arabica	34.88	4,00E-15	100.00	6-phosphogluconate dehydrogenase%2C decarboxylating 1
NODE_2275_length_250_cov_1.68208:g1286.t1	chr11	C. canephora	34.88	2,00E-15	100.00	6-phosphogluconate dehydrogenase%2C decarboxylating
NODE_2275_length_250_cov_1.68208:g1286.t1	NC_040045.1 11eu 11eu	C. eugenioides	34.88	2,00E-15	100.00	6-phosphogluconate dehydrogenase%2C decarboxylating 1-like
NODE_2298_length_249_cov_0.854651:g1297.t1	NC_039912.1 8e	C. arabica	47.46	2,00E-11	69.00	glycine dehydrogenase (decarboxylating)%2C mitochondrial-like isof
NODE_2298_length_249_cov_0.854651:g1297.t1	NC_040042.1 8eu	C. eugenioides	47.46	9,00E-12	69.00	glycine dehydrogenase (decarboxylating)%2C mitochondrial
NODE_2321_length_249_cov_1.69767:g1305.t1	NC_039905.1 4e	C. arabica	32.39	6,00E-09	80.00	long chain base biosynthesis protein 2a
NODE_2321_length_249_cov_1.69767:g1305.t1	chr4	C. canephora	32.39	2,00E-09	80.00	Serine palmitoyltransferase 2
NODE_2321_length_249_cov_1.69767:g1305.t1	NC_040038.1 4eu	C. eugenioides	32.39	3,00E-09	80.00	long chain base biosynthesis protein 2a
NODE_2327_length_248_cov_1.47368:g1307.t1	NC_039918.1 11c	C. arabica	44.58	2,00E-13	100.00	ATPase WRNIP1-like
NODE_2327_length_248_cov_1.47368:g1307.t1	chr11	C. canephora	44.58	6,00E-14	100.00	AAA-type ATPase family protein
NODE_2327_length_248_cov_1.47368:g1307.t1	NC_040045.1 11eu 11eu	C. eugenioides	44.58	7,00E-14	100.00	ATPase WRNIP1
NODE_2353_length_247_cov_0.858824:g1314.t1	NC_039901.1 2e	C. arabica	47.56	4,00E-19	100.00	glycerol-3-phosphate dehydrogenase [NAD(+)] 2%2C chloroplastic-li
NODE_2353_length_247_cov_0.858824:g1314.t1	chr2	C. canephora	47.56	5,00E-19	100.00	Putative Glycerol-3-phosphate dehydrogenase [NAD(P)]
NODE_2353_length_247_cov_0.858824:g1314.t1	NC_040036.1 2eu	C. eugenioides	47.56	2,00E-19	100.00	glycerol-3-phosphate dehydrogenase [NAD(+)] 2%2C chloroplastic is
NODE_2362_length_247_cov_2.61176:g1320.t1	NC_039911.1 7e	C. arabica	77.36	6,00E-23	100.00	chaperone protein ClpB3%2C chloroplastic-like
NODE_2362_length_247_cov_2.61176:g1320.t2	NC_039905.1 4e	C. arabica	74.39	1,00E-35	100.00	chaperone protein ClpB1
NODE_2362_length_247_cov_2.61176:g1320.t1	chr7	C. canephora	77.36	2,00E-23	100.00	Chaperone protein ClpB3%2C chloroplastic
NODE_2362_length_247_cov_2.61176:g1320.t2	chr4	C. canephora	74.39	4,00E-36	100.00	Chaperone protein ClpB1
NODE_2362_length_247_cov_2.61176:g1320.t1	NC_040045.1 11eu 11eu	C. eugenioides	77.36	4,00E-23	100.00	chaperone protein ClpB3%2C chloroplastic
NODE_2362_length_247_cov_2.61176:g1320.t2	NC_040045.1 11eu 11eu	C. eugenioides	70.73	2,00E-36	100.00	chaperone protein ClpB3%2C chloroplastic
NODE_2373_length_247_cov_0.864706:g1327.t1	NC_039899.1 1e	C. arabica	34.57	1,00E-06	97.00	dicarboxylate transporter 1%2C chloroplastic-like
NODE_2373_length_247_cov_0.864706:g1327.t1	chr8	C. canephora	34.57	4,00E-07	97.00	2-oxoglutarate/malate translocator%2C chloroplastic
NODE_2373_length_247_cov_0.864706:g1327.t1	NC_040035.1 1eu	C. eugenioides	34.57	6,00E-07	97.00	dicarboxylate transporter 1%2C chloroplastic
NODE_2378_length_247_cov_1.83529:g1329.t1	NC_039905.1 4e	C. arabica	64.56	8,00E-32	97.00	1-deoxy-D-xylulose 5-phosphate reductoisomerase%2C chloroplastic
NODE_2378_length_247_cov_1.83529:g1329.t1	chr4	C. canephora	64.56	3,00E-32	97.00	1-deoxy-D-xylulose 5-phosphate reductoisomerase%2C chloroplastic
NODE_2378_length_247_cov_1.83529:g1329.t1	NC_040038.1 4eu	C. eugenioides	64.56	4,00E-32	97.00	1-deoxy-D-xylulose 5-phosphate reductoisomerase%2C chloroplastic
NODE_2392_length_246_cov_1.71598:g1336.t1	NC_039906.1 5e	C. arabica	54.35	5,00E-09	85.00	LOW QUALITY PROTEIN: dihydrolipoyllysine-residue succinyltransfer
NODE_2392_length_246_cov_1.71598:g1336.t1	NC_040039.1 5eu	C. eugenioides	54.35	3,00E-09	85.00	dihydrolipoyllysine-residue succinyltransferase component of 2-oxog

oform X2

like isoform X2

isoform X2

ic-like

ic

ic-like

erase component of 2-oxoglutarate dehydrogenase complex 1%2C mitochondrial-like oglutarate dehydrogenase complex 2%2C mitochondrial

NODE_2418_length_245_cov_2.24405:g1347.t1
NODE_2418_length_245_cov_2.24405:g1347.t1
NODE_2419_length_245_cov_1.7619:g1348.t1
NODE_2419_length_245_cov_1.7619:g1348.t1
NODE_2419_length_245_cov_1.7619:g1348.t1
NODE_2420_length_245_cov_1.55952:g1349.t1
NODE_2420_length_245_cov_1.55952:g1349.t2
NODE_2420_length_245_cov_1.55952:g1349.t1
NODE_2420_length_245_cov_1.55952:g1349.t2
NODE_2420_length_245_cov_1.55952:g1349.t1
NODE_2420_length_245_cov_1.55952:g1349.t2
NODE_2450_length_244_cov_1.59281:g1359.t1
NODE_2450_length_244_cov_1.59281:g1359.t1
NODE_2450_length_244_cov_1.59281:g1359.t1
NODE_2451_length_244_cov_0.886228:g1360.t1
NODE_2451_length_244_cov_0.886228:g1360.t1
NODE_2451_length_244_cov_0.886228:g1360.t1
NODE_2456_length_244_cov_1.30539:g1362.t1
NODE_2456_length_244_cov_1.30539:g1362.t1
NODE_2456_length_244_cov_1.30539:g1362.t1
NODE_2465_length_243_cov_1.60241:g1366.t1
NODE_2465_length_243_cov_1.60241:g1366.t1
NODE_2465_length_243_cov_1.60241:g1366.t1
NODE_2469_length_243_cov_0.891566:g1368.t1
NODE_2469_length_243_cov_0.891566:g1368.t1
NODE_2469_length_243_cov_0.891566:g1368.t1
NODE_2471_length_243_cov_1.75904:g1370.t1
NODE_2471_length_243_cov_1.75904:g1370.t2
NODE_2471_length_243_cov_1.75904:g1370.t1
NODE_2471_length_243_cov_1.75904:g1370.t2
NODE_2471_length_243_cov_1.75904:g1370.t1
NODE_2471_length_243_cov_1.75904:g1370.t2
NODE_2478_length_243_cov_0.891566:g1372.t1
NODE_2478_length_243_cov_0.891566:g1372.t1

chr2	C. canep
NC_040036.1 2eu	C. eugen
NC_039917.1 10c	C. arabic
chr7	C. canep
NC_040044.1 10eu	C. eugen
NC_039898.1 1c	C. arabic
NC_039898.1 1c	C. arabic
chr1	C. canep
chr1	C. canep
NC_040035.1 1eu	C. eugen
NC_040035.1 1eu	C. eugen
NC_039911.1 7e	C. arabic
chr7	C. canep
NC_040041.1 7eu	C. eugen
NC_039905.1 4e	C. arabic
chr4	C. canep
NC_040038.1 4eu	C. eugen
NC_039904.1 4c	C. arabic
chr4	C. canep
NC_040038.1 4eu	C. eugen
NC_039906.1 5e	C. arabic
chr5	C. canep
NC_040039.1 5eu	C. eugen
NC_039909.1 6e	C. arabic
chr10	C. canep
NC_040040.1 6eu	C. eugen
NC_039900.1 2c	C. arabic
NC_039900.1 2c	C. arabic
chr2	C. canep
chr2	C. canep
NC_040035.1 1eu	C. eugen
NC_040035.1 1eu	C. eugen
NC_039903.1 3e	C. arabic
chr0	C. canep

canephora	56.06	1,00E-07	88.00	C
eugenioides	55.07	3,00E-07	92.00	C
arabica	36.07	4,00E-08	91.00	g
canephora	34.38	2,00E-08	95.00	G
eugenioides	36.07	3,00E-08	91.00	g
arabica	41.98	8,00E-14	98.00	L
arabica	42.50	1,00E-13	98.00	L
canephora	41.98	6,00E-14	98.00	Ľ
canephora	42.50	9,00E-14	98.00	Ľ
eugenioides	41.98	1,00E-13	98.00	ly
eugenioides	42.50	2,00E-13	98.00	ly
arabica	54.55	2,00E-11	95.00	р
canephora	54.55	7,00E-12	95.00	Р
eugenioides	54.55	1,00E-11	95.00	L
arabica	40.51	8,00E-08	92.00	u
canephora	37.33	1,00E-07	92.00	Р
eugenioides	40.51	5,00E-08	92.00	u
arabica	48.72	3,00E-21	97.00	а
canephora	48.72	1,00E-21	97.00	Α
eugenioides	48.72	2,00E-21	97.00	а
arabica	53.75	4,00E-22	100.00	а
canephora	53.75	1,00E-22	100.00	A
eugenioides	53.75	2,00E-22	100.00	а
arabica	36.84	5,00E-10	95.00	а
canephora	36.84	1,00E-10	95.00	A
eugenioides	36.84	2,00E-10	95.00	а
arabica	51.72	7,00E-15	98.00	р
arabica	55.56	6,00E-26	100.00	р
canephora	51.72	1,00E-15	98.00	Р
canephora	55.56	5,00E-27	100.00	Р
eugenioides	51.72	3,00E-15	98.00	р
eugenioides	55.56	2,00E-26	100.00	р
arabica	41.38	6,00E-10	100.00	A
canephora	41.38	4,00E-10	100.00	A

Cysteine synthase
cysteine synthase-like isoform X1
gamma carbonic anhydrase 1%2C mitochondrial-like
Gamma carbonic anhydrase 1%2C mitochondrial
gamma carbonic anhydrase 1%2C mitochondrial
LOW QUALITY PROTEIN: lysinetRNA ligase%2C chloroplastic/mitc
LOW QUALITY PROTEIN: lysinetRNA ligase%2C chloroplastic/mitc
LysinetRNA ligase
LysinetRNA ligase
lysinetRNA ligase%2C chloroplastic/mitochondrial
lysinetRNA ligase%2C chloroplastic/mitochondrial
probable phosphoribosylformylglycinamidine synthase%2C chloro
Probable phosphoribosylformylglycinamidine synthase%2C chloro
LOW QUALITY PROTEIN: probable phosphoribosylformylglycinamic
uncharacterized protein LOC113742678
Putative Uncharacterized RNA methyltransferase CT0009
uncharacterized protein LOC113767750
adenylate kinase 4
Adenylate kinase B
adenylate kinase 4
aconitate hydratase%2C cytoplasmic
Aconitate hydratase 2%2C mitochondrial
aconitate hydratase%2C cytoplasmic isoform X2
acetolactate synthase 2%2C chloroplastic-like
Acetolactate synthase 2%2C chloroplastic
acetolactate synthase 2%2C chloroplastic
peptide methionine sulfoxide reductase A1-like
peptide methionine sulfoxide reductase A1-like
Peptide methionine sulfoxide reductase
Peptide methionine sulfoxide reductase
peptide methionine sulfoxide reductase A1-like
peptide methionine sulfoxide reductase A1-like
ATP-dependent Clp protease ATP-binding subunit ClpA homolog Cl
ATP-dependent Clp protease ATP-binding subunit clpA homolog Cl

ochondrial-like ochondrial-like

oplastic/mitochondrial oplastic/mitochondrial idine synthase%2C chloroplastic/mitochondrial

CD4B%2C chloroplastic-like CD4B%2C chloroplastic

NODE_2478_length_243_cov_0.891566:g1372.t1	NC_040037.1 3eu	C. eugenioides
NODE_2483_length_243_cov_1.63855:g1374.t1	NC_039898.1 1c	C. arabica
NODE_2483_length_243_cov_1.63855:g1374.t1	NC_040036.1 2eu	C. eugenioides
NODE_2488_length_243_cov_1.31928:g1376.t1	NC_039903.1 3e	C. arabica
NODE_2488_length_243_cov_1.31928:g1376.t1	chr3	C. canephora
NODE_2488_length_243_cov_1.31928:g1376.t1	NC_040037.1 3eu	C. eugenioides
NODE_2533_length_241_cov_1.80488:g1394.t1	NC_039900.1 2c	C. arabica
NODE_2533_length_241_cov_1.80488:g1394.t1	chr2	C. canephora
NODE_2533_length_241_cov_1.80488:g1394.t1	NC_040036.1 2eu	C. eugenioides
NODE_2536_length_241_cov_0.896341:g1396.t1	NC_039911.1 7e	C. arabica
NODE_2536_length_241_cov_0.896341:g1396.t1	chr4	C. canephora
NODE_2536_length_241_cov_0.896341:g1396.t1	NC_040041.1 7eu	C. eugenioides
NODE_2538_length_241_cov_1.80488:g1398.t1	NC_039904.1 4c	C. arabica
NODE_2538_length_241_cov_1.80488:g1398.t1	chr4	C. canephora
NODE_2538_length_241_cov_1.80488:g1398.t1	NC_040038.1 4eu	C. eugenioides
NODE_2540_length_241_cov_2.68902:g1400.t1	NC_039898.1 1c	C. arabica
NODE_2540_length_241_cov_2.68902:g1400.t1	chr1	C. canephora
NODE_2540_length_241_cov_2.68902:g1400.t1	NC_040035.1 1eu	C. eugenioides
NODE_2557_length_240_cov_1.39877:g1411.t1	NC_039913.1 8c	C. arabica
NODE_2557_length_240_cov_1.39877:g1411.t1	chr8	C. canephora
NODE_2557_length_240_cov_1.39877:g1411.t1	NC_040042.1 8eu	C. eugenioides
NODE_2577_length_239_cov_1.80247:g1424.t1	NC_039908.1 6c	C. arabica
NODE_2577_length_239_cov_1.80247:g1424.t1	chr6	C. canephora
NODE_2577_length_239_cov_1.80247:g1424.t1	NC_040040.1 6eu	C. eugenioides
NODE_2594_length_239_cov_3.22222:g1430.t1	NC_039907.1 5c	C. arabica
NODE_2594_length_239_cov_3.22222:g1430.t1	chr5	C. canephora
NODE_2594_length_239_cov_3.22222:g1430.t1	NC_040039.1 5eu	C. eugenioides
NODE_2603_length_239_cov_1.49383:g1434.t1	NC_039912.1 8e	C. arabica
NODE_2603_length_239_cov_1.49383:g1434.t1	chr2	C. canephora
NODE_2603_length_239_cov_1.49383:g1434.t1	NC_040036.1 2eu	C. eugenioides
NODE_2638_length_238_cov_2.07453:g1445.t1	NC_039899.1 1e	C. arabica
NODE_2638_length_238_cov_2.07453:g1445.t2	NC_039899.1 1e	C. arabica
NODE_2638_length_238_cov_2.07453:g1445.t1	chr1	C. canephora
NODE_2638_length_238_cov_2.07453:g1445.t2	chr1	C. canephora

50.62	
44.83	
44.83	
44.83	
44.83	

100.00	ATP-dependent Clp protease ATP-binding subunit ClpA homolog CD
98.00	uncharacterized protein LOC113739227
98.00	uncharacterized protein LOC113759946
100.00	cysteine synthase%2C chloroplastic/chromoplastic-like isoform X2
100.00	Cysteine synthase%2C chloroplastic/chromoplastic
100.00	cysteine synthase%2C chloroplastic/chromoplastic-like isoform X2
93.00	LOW QUALITY PROTEIN: transketolase%2C chloroplastic-like
93.00	Transketolase%2C chloroplastic
93.00	transketolase%2C chloroplastic-like
100.00	lysinetRNA ligase%2C cytoplasmic-like isoform X2
100.00	Putative Lysyl-tRNA synthetase%2C class II
100.00	lysinetRNA ligase isoform X2
89.00	peptide deformylase 1A%2C chloroplastic-like
89.00	Peptide deformylase 1A%2C chloroplastic
89.00	peptide deformylase 1A%2C chloroplastic
100.00	alpha-glucan phosphorylase%2C H isozyme
100.00	Alpha-glucan phosphorylase%2C H isozyme
100.00	alpha-glucan phosphorylase%2C H isozyme
100.00	ATP-dependent zinc metalloprotease FTSH 4%2C mitochondrial-like
100.00	ATP-dependent zinc metalloprotease FTSH 4%2C mitochondrial
100.00	ATP-dependent zinc metalloprotease FTSH 4%2C mitochondrial isot
100.00	preprotein translocase subunit SECY%2C chloroplastic-like isoform
100.00	Preprotein translocase subunit SCY1%2C chloroplastic
100.00	preprotein translocase subunit SECY%2C chloroplastic
82.00	trifunctional UDP-glucose 4%2C6-dehydratase/UDP-4-keto-6-deoxy
82.00	Probable rhamnose biosynthetic enzyme 1
82.00	trifunctional UDP-glucose 4%2C6-dehydratase/UDP-4-keto-6-deoxy
98.00	LOW QUALITY PROTEIN: ribose-phosphate pyrophosphokinase 1-lik
100.00	Ribose-phosphate pyrophosphokinase 5%2C chloroplastic
100.00	ribose-phosphate pyrophosphokinase 1-like
75.00	iron-sulfur protein NUBPL-like
75.00	iron-sulfur protein NUBPL-like
75.00	Iron-sulfur protein NUBPL
75.00	Iron-sulfur protein NUBPL

40.23

100.00

92.98

67.57

67.57

67.57

50.67

50.67

52.00

69.49

69.49

69.49

39.39

39.39

39.39 46.43

46.43

46.43

60.76

60.76

60.76 34.94

34.94

34.94 44.62

44.62

44.62

50.00

50.62

7,00E-10

4,00E-34

1,00E-29

3,00E-29

1,00E-29

2,00E-29

3,00E-21

1,00E-21

8,00E-22

3,00E-25

1,00E-26

1,00E-25

7,00E-09

5,00E-09

1,00E-08

3,00E-20

1,00E-20 2,00E-20

4,00E-20

2,00E-20 3,00E-20

1,00E-08

5,00E-09

8,00E-09

5,00E-11

2,00E-11

3,00E-11

3,00E-21

2,00E-21

4,00E-21

2,00E-11

2,00E-11

5,00E-12

5,00E-12

CD4B%2C chloroplastic-like

like isoform X2

isoform X2 orm X1

eoxy-D-glucose 3%2C5-epimerase/UDP-4-keto-L-rhamnose-reductase RHM1-like

eoxy-D-glucose 3%2C5-epimerase/UDP-4-keto-L-rhamnose-reductase RHM1-like 1-like

NODE_2638_length_238_cov_2.07453:g1445.t1
NODE_2638_length_238_cov_2.07453:g1445.t2
NODE_2681_length_236_cov_1.84906:g1463.t1
NODE_2696_length_236_cov_2.13836:g1473.t1
NODE_2696_length_236_cov_2.13836:g1473.t1
NODE_2696_length_236_cov_2.13836:g1473.t1
NODE_2701_length_235_cov_1.86076:g1475.t1
NODE_2701_length_235_cov_1.86076:g1475.t1
NODE_2701_length_235_cov_1.86076:g1475.t1
NODE_2703_length_235_cov_0.936709:g1476.t1
NODE_2703_length_235_cov_0.936709:g1476.t1
NODE_2703_length_235_cov_0.936709:g1476.t1
NODE_2705_length_235_cov_1.44304:g1477.t1
NODE_2705_length_235_cov_1.44304:g1477.t1
NODE_2705_length_235_cov_1.44304:g1477.t1
NODE_2714_length_234_cov_3.57962:g1482.t1
NODE_2714_length_234_cov_3.57962:g1482.t1
NODE_2714_length_234_cov_3.57962:g1482.t1
NODE_2721_length_234_cov_0.936306:g1485.t1
NODE_2721_length_234_cov_0.936306:g1485.t1
NODE_2721_length_234_cov_0.936306:g1485.t1
NODE_2763_length_233_cov_1.94872:g1498.t1
NODE_2763_length_233_cov_1.94872:g1498.t1
NODE_2763_length_233_cov_1.94872:g1498.t1
NODE_2764_length_232_cov_2.83871:g1499.t1
NODE_2764_length_232_cov_2.83871:g1499.t1
NODE_2764_length_232_cov_2.83871:g1499.t1
NODE_2769_length_232_cov_2.73548:g1501.t1
NODE_2769_length_232_cov_2.73548:g1501.t1
NODE_2769_length_232_cov_2.73548:g1501.t1
NODE_2784_length_232_cov_0.948387:g1508.t1
NODE_2784_length_232_cov_0.948387:g1508.t1
NODE_2784_length_232_cov_0.948387:g1508.t1
NODE_2817_length_231_cov_1.91558:g1524.t1

NC_040035.1 1eu	C. eugenioides	44.83
NC_040035.1 1eu	C. eugenioides	44.83
NC_008535.1 chloroplast	C. arabica	43.42
NC_039904.1 4c	C. arabica	38.96
chr4	C. canephora	38.96
NC_040038.1 4eu	C. eugenioides	38.96
NC_039910.1 7c	C. arabica	36.47
chr1	C. canephora	36.84
NC_040041.1 7eu	C. eugenioides	36.47
NC_039905.1 4e	C. arabica	66.23
chr1	C. canephora	66.67
NC_040038.1 4eu	C. eugenioides	66.23
NC_039905.1 4e	C. arabica	37.66
chr4	C. canephora	38.96
NC_040038.1 4eu	C. eugenioides	37.66
NC_039911.1 7e	C. arabica	35.90
chr7	C. canephora	35.90
NC_040041.1 7eu	C. eugenioides	34.62
NC_039908.1 6c	C. arabica	41.51
chr6	C. canephora	41.51
NC_040040.1 6eu	C. eugenioides	41.51
NC_039917.1 10c	C. arabica	55.56
chr10	C. canephora	55.56
NC_040036.1 2eu	C. eugenioides	55.56
NC_039908.1 6c	C. arabica	33.80
chr6	C. canephora	32.88
NC_040040.1 6eu	C. eugenioides	32.88
NC_039901.1 2e	C. arabica	40.38
chr2	C. canephora	40.38
NC_040036.1 2eu	C. eugenioides	40.38
NC_039909.1 6e	C. arabica	60.47
chr10	C. canephora	60.47
NC_040040.1 6eu	C. eugenioides	60.47
NC_039908.1 6c	C. arabica	33.33

1,00E-11	75.00	iron-sulfur protein NUBPL
1,00E-11	75.00	iron-sulfur protein NUBPL
1,00E-12	97.00	acetyl-CoA carboxylase beta subunit
2,00E-10	89.00	uncharacterized protein LOC113739385
6,00E-11	89.00	Putative Oxygen-independent coproporphyrinogen-III oxidase-like pro
1,00E-10	89.00	uncharacterized protein LOC113768482
1,00E-09	92.00	xanthine dehydrogenase 1-like isoform X1
1,00E-09	92.00	Aldehyde oxidase 4
8,00E-10	92.00	xanthine dehydrogenase 1-like isoform X1
1,00E-20	100.00	ruBisCO large subunit-binding protein subunit beta%2C chloroplastic-
2,00E-21	74.00	Chaperonin CPN60-2%2C mitochondrial
8,00E-21	100.00	ruBisCO large subunit-binding protein subunit beta%2C chloroplastic
2,00E-09	98.00	NADP-specific glutamate dehydrogenase isoform X1
2,00E-10	98.00	Putative NADP-specific glutamate dehydrogenase
9,00E-10	98.00	NADP-specific glutamate dehydrogenase isoform X1
2,00E-12	97.00	octanoyltransferase LIP2p%2C chloroplastic-like isoform X3
1,00E-12	97.00	Plastidial lipoyltransferase 2
2,00E-11	97.00	octanoyltransferase LIP2p%2C chloroplastic-like isoform X2
2,00E-07	80.00	uracil phosphoribosyltransferase isoform X2
5,00E-08	80.00	Uracil phosphoribosyltransferase
2,00E-07	80.00	uracil phosphoribosyltransferase
5,00E-19	93.00	bifunctional aspartokinase/homoserine dehydrogenase 1%2C chlorop
2,00E-19	93.00	Bifunctional aspartokinase/homoserine dehydrogenase%2C chloropla
3,00E-19	93.00	bifunctional aspartokinase/homoserine dehydrogenase 1%2C chlorop
6,00E-07	93.00	D-lactate dehydrogenase [cytochrome]%2C mitochondrial
1,00E-07	96.00	D-lactate dehydrogenase [cytochrome]%2C mitochondrial
8,00E-08	96.00	D-lactate dehydrogenase [cytochrome]%2C mitochondrial isoform X2
6,00E-08	68.00	delta-1-pyrroline-5-carboxylate synthase
2,00E-08	68.00	Delta-1-pyrroline-5-carboxylate synthase
3,00E-08	68.00	delta-1-pyrroline-5-carboxylate synthase isoform X2
3,00E-13	55.00	acetolactate synthase 2%2C chloroplastic-like
8,00E-14	55.00	Acetolactate synthase 2%2C chloroplastic
1,00E-13	55.00	acetolactate synthase 2%2C chloroplastic
9,00E-09	98.00	ferredoxin-dependent glutamate synthase%2C chloroplastic

ke protein sll1917

astic-like

loroplastic-like proplastic (Fragment) loroplastic-like

m X2
NODE_2817_length_231_cov_1.91558:g1524.t1 NODE_2817_length_231_cov_1.91558:g1524.t1 NODE_2850_length_230_cov_1.04575:g1539.t1 NODE_2850_length_230_cov_1.04575:g1539.t1 NODE_2850_length_230_cov_1.04575:g1539.t1 NODE_2860_length_229_cov_1.58553:g1544.t1 NODE_2860_length_229_cov_1.58553:g1544.t1 NODE_2866_length_229_cov_2.88158:g1549.t1 NODE_2866_length_229_cov_2.88158:g1549.t1 NODE_2866_length_229_cov_2.88158:g1549.t1

chr6	C. canephora	33.33	3,00E-09	98.00	Fe
NC_040040.1 6eu	C. eugenioides	32.00	2,00E-08	98.00	fei
NC_039904.1 4c	C. arabica	42.50	1,00E-12	100.00	un
chr4	C. canephora	42.50	5,00E-13	100.00	Pu
NC_040038.1 4eu	C. eugenioides	42.50	7,00E-13	100.00	un
NC_039906.1 5e	C. arabica	71.43	3,00E-10	46.00	dił
NC_040039.1 5eu	C. eugenioides	71.43	2,00E-10	46.00	dił
NC_039908.1 6c	C. arabica	30.77	1,00E-08	100.00	2-0
chr6	C. canephora	30.77	5,00E-09	100.00	Pu
NC_040040.1 6eu	C. eugenioides	30.77	8,00E-09	100.00	un

Ferredoxin-dependent glutamate synthase 1%2C chloroplastic ferredoxin-dependent glutamate synthase%2C chloroplastic uncharacterized protein LOC113739699 isoform X1 Putative D-tagatose-1%2C6-bisphosphate aldolase subunit GatY uncharacterized protein LOC113768766 dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex 2%2C mitochondrial-like dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex 2%2C mitochondrial 2-Cys peroxiredoxin BAS1%2C chloroplastic Putative 1-cysteine peroxiredoxin 1 uncharacterized protein LOC113774880 **Apêndice B.** Características de sequências proteicas de *Coffea*. Gene1: *LRR receptorlike serine/threonine-protein kinase GSO2*. Gene2: *putative receptor-like protein kinase At3g47110*. *C. arabica*1: sequências proteicas da variedade Caturra (NCBI). *C. arabica*2: sequências proteicas da variedade Típica (dados não publicados). *C. arabica*3: sequências proteicas da variedade Bourbon (WCR). *C. canephora*: sequências proteicas do clone IF 200 (*Coffee Genome Hub*).

Genoma	Sequência proteica	Anotação	Domínios
BAC 70-22F	Gene2	putative receptor-like protein	LRR1
		kinase At3g47110	
C. arabica2	g1-	receptor-like serine threonine-	LRR8
	(Scaffold4162HRSCAF	kinase EFR	LRRNT2
	4163) gene-0.17 mRNA-1		Pkinase
			Pkinase
C. arabica1	g1-XP027093211.1	putative receptor-like protein	LRR8
		kinase At3g47110 isoform X1	LRR8
			ΙΡΡΝΤΆ
			Dkinase
C arabica?	<u>α</u> 2_	recentor-like serine threenine-	I RHase
C. urubicuz	(Scaffold4162HRSCAF	kinase At3o47570	LRR8
	4163) gene-0 13 mRNA-1	kindse mog i svo	LRRNT2
			Pkinase
C. arabica1	g2-XP027093214.1	probable LRR receptor-like	LRRNT2
	8	serine/threonine-protein kinase	LRR8
		At3e47570	LRR8
			Pkinase
C. arabica1	g3- XP027090481.1	putative receptor-like protein	LRRNT2
		kinase At3g47110	LRR8
			LRR8
			Pkinase
C. arabica1	g4- XP027090966.1	putative receptor-like protein	LRRNT2
		kinase At3g47110 isoform X2	LRR1
			LRR8
			LRR8
			Pkinase
C. arabica1	g5- XP027090965.1	putative receptor-like protein	LRRNT2
		kinase At3g47110 isoform X1	LRR1
			LRR8
			LRR8
			Pkinase
C. arabica2	g3- g4-	receptor-like serine threonine-	6x
	(Scaffold5;HRSCAF=6)	kinase	LRRNT2
	snap gene-90.101-mRNA-		12x LRR8
	1		9x Pkinase
C. canephora	g1-Cc10g13960	Putative Probable LRR	LRRNT2
		receptor-like serine/threonine-	LRR8

C. arabica2g4- (Scaffold34;HRSCAF=35) snap-gene-17.62-mRNA- 1receptor-like serine threonine- kinase At3g47570Pkinase LRR8 LRR8 PkinaseC. arabica3g1- g35710.t1receptor kinase-like Xa21 isoform X1protein LRR8 LR8 <th></th>	
C. arabica2g4- (Scaffold34;HRSCAF=35)) snap-gene-17.62-mRNA- 1receptor-like serine threonine- 	
(Scaffold34;HRSCAF=35) snap-gene-17.62-mRNA- 1kinase At3g47570LRR8 LRR8 	C. arabica2
) snap-gene-17.62-mRNA- 1LRR8 PkinaseC. arabica3g1- g35710.t1receptor kinase-like Xa21 isoform X1protein LRRNT2 LRR8 LRR8 PkinaseC. arabica3g2- g31764.t1receptor kinase-like receptor kinase-likeprotein LRR8 LRR8 Pkinase	
1PkinaseC. arabica3g1- g35710.t1receptor kinase-like Xa21 isoform X1protein LRR8 LRR8 PkinaseC. arabica3g2- g31764.t1receptor kinase-like receptor kinase-likeprotein LRRNT2	
C. arabica3g1- g35710.t1receptor kinase-like Xa21 isoform X1protein LRR8 LRR8 PkinaseC. arabica3g2- g31764.t1receptor kinase-like receptor kinase-likeproteinLRRNT2 LRR8 LRR8 Pkinase	
C. arabica3 g2- g31764.t1 Xa21 isoform X1 LRR8 LRR8 Pkinase	C. arabica3
LRR8C. arabica3g2- g31764.t1receptorkinase-likeproteinLRRNT2	
C. arabica3g2- g31764.t1PkinaseC. arabica3g2- g31764.t1receptorkinase-likeprotein	
C. arabica3 g2-g31764.t1 receptor kinase-like protein LRRNT2	
	C. arabica3
Xa21 isoform X1 LRR8	
LRR8	
LRR8	
Pkinase	
C. arabica2 g5- probable LRR receptor-like LRRNT2	C. arabica2
(Scaffold35;HRSCAF=36 serine threonine- kinase LRR8	
) augustus-gene-17.115- $At3g47570$ isoform X1 LRR8	
mRNA-1	
Pkinase	
C. arabica3 g3-g631.t1 receptor kinase-like protein LRRNT2	C. arabica3
Xa21 isoform X1 LRR8	
LRR8	
LRR8	
Pkinase	
C. canephora g2- Cc00g00860 Putative Probable LRR LRRNT2	2. canephora
receptor-like serine/threonine- LRR1	
protein kinase At3g4/5/0 LRR8	
Pkinase Ty	7 1
C. canephora g3- Cc08g08/50 Putative LRR receptor-like LRR8	. canephora
serine/threonine-protein kinase LRR8	
<i>EFR</i> PKinase	$\overline{1}$
C. arabica3 g4-g21521.t1 uncharacterized protein RV1_1	. arabica3
LUCI13/084// ZI_KVI	
LKKIN12 Divinase	
PKinase C arabiaa ² a5 a17545 t1 uncharacterized metain DVT 1	arabias?
C. arabicas g3-g17545.t1 uncharacterized protein KVI_I	arabicas
Dkinase	
$\frac{1 \text{ Kindsc}}{C \text{ canenhora } g4-Cc07g11480} = Putative Cation/H(\pm) \text{ antiporter } N_2 = H Exc.$	^r canenhora
$\begin{bmatrix} C. Cunceptora \\ g^{+} CCOrginato \\ 2 \end{bmatrix}$	unepnoru
C. arabica2 g6- H(+) antiporter 2-like isoform Na H Exc	C. arabica2
(Scaffold28:HRSCAF=29 X1	
) gene-24.49-mRNA-1	
C. arabica2 g7- H(+) antiporter 2-like isoform Na H Exc	7. arabica2
$\begin{bmatrix} S_{1} \\ (Scaffold25; HRSCAF=26 \\ X1 \end{bmatrix} \xrightarrow{(X_{1})} $	
) gene-28.30-mRNA-1	

C. canephora	g5-Cc07g04300	Putative uncharacterized protein	ТСР
C. canephora	g6- Cc08g14420	Putative Myosin heavy chain-	NT_C2
		related protein	
C. arabica2	g8-	calmodulin-binding	CG-1
	(Scaffold2407;HRSCAF=	transcription activator 3-like	
	2408) snap-gene-0.13-	isoform X1	
	mRNA-1		
C. arabica2	g9-	uncharacterized	N6-
	(Scaffold24;HRSCAF=25		adenineMla
) gene-17.117-mRNA-1		se
C. arabica2	g10-	guanine nucleotide-binding	HECT_2
	(Scaffold28;HRSCAF=29	alpha-1 subunit isoform X2	
) gene-20.62-mRNA-1		
C. canephora	g7- Cc07g10020	Putative CONTAINS InterPro	HECT_2
~		DOMAIN/s	
C. arabica1	g6- XP027120379.1	uncharacterized protein	rve
	7 ND0071000(0.1	LOC113/3/329	D
C. arabica1	g/- XP02/102262.1	uncharacterized protein	Retrotrans
		LOC113/3/329	gag
C 1 1	- 0 VD0270(4210.1	1	rve
C. arabica I	g8- XP02/064319.1	uncharacterizea protein	Retrotrans
		LOC113090332	gag DT DNacall
			KI KINASEH
			Hitegrase
			H2C2
C arabical	σ9- XP027118312 1	uncharacterized protein	Retrotrans
C. arabica 1	g)- AI 027110512.1	IOC113735511	gag
		200113735311	gag RT RNaseH
			Integrase
			H2C2
			rve
C. arabica3	g6-g6102.t1	LRR receptor-like	-
	6-6	serine/threonine-protein kinase	
		GSO2	
C. arabica3	g7-g22356.t1	uncharacterized protein	-
		LOC113703097	
C. arabica3	g8-g32952.t1	LRR receptor-like	-
		serine/threonine-protein kinase	
		GSO2	
BAC 70-22F	Gene1	LRR receptor-like	-
		serine/threonine-protein kinase	
		GSO2	
C. arabica3	g9-g19672.t1	uncharacterized protein	-
		LOC113703097	
C. arabica1	g10- XP027080133.1	uncharacterized protein	-
		LOC113703097	
C. arabica3	g10-g5288.t1	uncharacterized protein	-
		LOC113703097	