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ABSTRACT: Coffee farmers do not have efficient tools to have sufficient and reliable information 
on the maturation stage of coffee fruits before harvest. In this study, we propose a computer 
vision system to detect and classify the Coffea arabica (L.) on tree branches in three classes: 
unripe (green), ripe (cherry), and overripe (dry). Based on deep learning algorithms, the 
computer vision model YOLO (You Only Look Once), was trained on 387 images taken from 
coffee branches using a smartphone. The YOLOv3 and YOLOv4, and their smaller versions (tiny), 
were assessed for fruit detection. The YOLOv4 and YOLOv4-tiny showed better performance 
when compared to YOLOv3, especially when smaller network sizes are considered. The mean 
average precision (mAP) for a network size of 800 × 800 pixels was equal to 81 %, 79 %, 78 %, 
and 77 % for YOLOv4, YOLOv4-tiny, YOLOv3, and YOLOv3-tiny, respectively. Despite the similar 
performance, the YOLOv4 feature extractor was more robust when images had greater object 
densities and for the detection of unripe fruits, which are generally more difficult to detect due to 
the color similarity to leaves in the background, partial occlusion by leaves and fruits, and lighting 
effects. This study shows the potential of computer vision systems based on deep learning to 
guide the decision-making of coffee farmers in more objective ways. 
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Introduction

Coffee demand has increased along with the demand 
for high-quality products. The supply of high-quality 
coffee is attributed mainly to improvements in selective 
harvesting, preferably of ripe fruits (Pineda et al., 
2022). Enhancing selective harvest has allowed for the 
emergence of special products. To meet the increasing 
demands, new technologies and good crop management 
practices are needed to improve the quality of harvested 
coffee without harming the environment.

Most coffee farmers do not have efficient tools 
to have sufficient and reliable information about the 
maturation stage of coffee fruits before harvest (Ramos et 
al., 2017). Tracking the coffee fruits maturation stage can 
aid the decision of adequate harvesting periods based on 
the percentage of mature fruits on tree branches (Ramos 
et al., 2018; Rodríguez et al., 2020). This information is 
essential for crop management and adequately support 
decision-making (Martello et al., 2022).

The color of fruit samples is traditionally used to 
assess the maturation of coffee fruits, and the evaluation 
can be visual or using colorimeters. Colorimeters 
measure the color of the fruit surface but without 
spatial representativeness (Oliveira et al., 2016). Visual 
classification can also be subjective and relies on the 
person’s experience.

In recent decades, systems based on computer 
vision have been largely applied to detect and classify 
fruits (Bazame et al., 2021; Ning et al., 2022; Thendral 
and David, 2022; Wang et al., 2019; Wu et al., 2020a). 
Few studies have reported on the classification of coffee 
fruits before the harvest, which can aid the decision-
making of coffee farmers (Avendano et al., 2017; Ramos 
et al., 2018). However, most of these studies adopted 

techniques that require first extracting various features 
and then feeding them to the classification algorithm. 

Recent advances in computer vision systems 
based on deep learning allow several features to be 
extracted automatically. For example, the YOLO (You 
Only Look Once) algorithm is a popular computer vision 
algorithm that has been used in several challenges in 
agriculture. YOLO has previously been used to detect 
flowers for robotic pollination (Li et al., 2022), fruit 
load and maturation (Cuong et al., 2022; Fu et al., 2022; 
Mirhaji et al., 2021), and weed detection (Parico and 
Ahamed, 2020). Therefore, this study aims to implement 
and explore different YOLO algorithms to detect coffee 
fruits on tree branches and classify the fruits according 
to the different maturation stages. 

Materials and Methods 

Data acquisition and labeling

The dataset used in this study consists of 387 RGB images 
of coffee fruits on tree branches (Figure 1). We used a 
Smartphone to photograph the fruits before harvest, 
between 12 and 29 May 2020, from a commercial farm 
of arabica coffee (Catuaí 144) in the municipality of 
Patos de Minas, Minas Gerais State, Brazil (18°32’28.55” 
S, 46°3’51.17” W, altitude 1020 m). Although the 
pictures were taken near the harvest, the crop uneven 
flowering over time resulted in pictures of coffee fruits 
with a mix of maturation stages. For developing a robust 
computer vision model for different field conditions, 
the pictures were taken from different angles, sides, 
and plants randomly selected across coffee lines. This 
resulted in a diverse scenario under different lighting 
conditions. The pictures were taken without zoom or 
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flash and were saved with an image resolution of 72 dpi. 
The smartphone camera automatically adjusted for the 
white balance. The images were then randomly split 
into a training set (~80 % = 310 images) and a testing 
set (~20 % = 77 images).

The images were annotated considering three 
stages (classes) of coffee fruit maturation: unripe (green), 
ripe (cherry), and overripe (or dry). The annotation was 
carried out using the graphical user interface Yolo Mark 
(Bochkovskiy et al., 2020).

Computer vision algorithm 

This study chose the YOLO algorithm for object detection 
(Redmon and Farhadi, 2018). The YOLO belongs to a 
family of one-stage object detectors and is popular for its 
speed and accuracy (Wu et al., 2020a). In this study, we 
assessed the improvements of the YOLO latest version, 
YOLOv4 (Bochkovskiy et al., 2020), compared to its 
former version, YOLOv3 (Redmon and Farhadi, 2018). 
The improvements of the YOLOv4 over its former 
version include using the Mish activation function 
(Misra, 2019), CutMix and mosaic data augmentation, 
Cross-Stage Partial connections (CSP), Cross mini-Batch 
Normalization (CmBN), Spatial Pyramid Pooling (SPP) 
(He et al., 2015) and the Path Aggregation Network 
(PANet) blocks, Complete Intersection over Union 
(CIoU) loss (Zheng et al., 2019), among others.

Besides the YOLOv3 and YOLOv4, a smaller 
version of these models, termed “tiny”, was also 
assessed. The YOLO-tiny models were developed 
with fewer convolutional layers and are suitable for 

constrained devices, such as mobile phones (Tang, 2018), 
microcomputers, and microcontrollers.

The object detection models were trained 
considering different network sizes and resampling image 
sizes to match the corresponding network. The network 
sizes adopted were 320 × 320, 416 × 416, 512 × 512, 
608 × 608, 704 × 704, and 800 × 800 pixels. For training, 
the batch size was set to 32 in the forward pass and the 
number of iterations was equal to 6000. The confidence 
thresholds (c) and non-maximum suppression adopted 
were 0.25 and 0.45, respectively. The performance 
criterion was tracked for each training iteration using 
the test set. The weights with the best performance were 
adopted as the final weights for the model.

Performance evaluation

The performance of the computer vision algorithms 
was measured by the mean values of average precisions 
(mAP) obtained for all classes detected, considering an 
intersection over union of 50 %. The average precision 
(Eq. (1)) is the average value of 11 points on the 
precision/recall curve for pre-determined confidence 
thresholds for the same class. The precision (Eq. (2)) 
and recall (Eq. (3)) are computed for 11 equally spaced 
confidence thresholds (c = 0.0, 0.1, …, 1.0) and precision 
at each recall level (Eq. (4)) is interpolated by setting the 
maximum precision measured for a threshold whose 
corresponding recall r’ exceeds r (Eq. (4)):
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where: AP is the average precision, TP are true positives, 
FP are false positives, FN are false negatives, p(r) is the 
precision at recall level r, p(r’) is the precision at recall 
level r’, and c is the confidence threshold. 

Results and Discussion

The results are presented and discussed in three 
subsections. The first subsection discusses the general 
performance obtained by the object detection algorithms 
and highlights the main findings of this study. The 
following subsections detail more specific outcomes 
from the algorithms concerning performance scores for 
the different classes and object densities, respectively.

General performance obtained by YOLO 
algorithms

The performance of coffee fruit detection for each YOLO 
algorithm and network size, as measured by their mean 

Figure 1 – Image acquisition for coffee fruits on tree branches.
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average precision (mAP), is presented in Figure 2. For 
the YOLOv4, YOLOv4-tiny, and YOLOv3, the mAP 
stabilized near the network size of 608 × 608 pixels. In 
contrast, the performance of the YOLOv3-tiny continued 
to increase until the network size of 704 × 704 pixels. 
Despite stabilizing, the performance of the algorithms 
still showed slight improvements up to 800 × 800 
pixels. In general, both the YOLOv4 and YOLOv4-tiny 
outperformed the YOLOv3. The YOLOv4-800 scored the 
highest mAP (81 %), followed by YOLOv4-tiny-800 (79 %), 
YOLOv3-800 (78 %), and YOLOv3-tiny-800 (77 %). 

The smaller the network size, the greater the 
YOLOv4 and YOLOv4-tiny outperform the YOLOv3 
and YOLOv3-tiny. In contrast, when larger network 
sizes are considered, for instance, 704 × 704 and 800 
× 800 pixels, the difference in performances of the 
YOLOv3 and YOLOv3-tiny are negligible. Perhaps 
the most important outcome here is the YOLOv4-
tiny outperforming the YOLOv3. This means that the 
updates made for the latest YOLO version were crucial 
to improve its performance, even when considering a 
restricted number of convolutional layers. The YOLOv4-
tiny requires ~90 % fewer billion floating-point 
operations than the YOLOv3, which means its model/
weights not only occupy less space in a hard drive but 
can also be run much faster. 

The detections made by the YOLO algorithms for 
three random images from the dataset and considering 
the network size of 800 × 800 pixels are shown in Figures 
3A, 3B, and 3C. The mAP obtained for each image is 
also displayed in the figure, where YOLOv4 consistently 
outperforms the other algorithms. YOLOv4 better detects 
overlapped fruits (Figure 3C) or in the shade (Figure 3A). 
It also better detect unripe (green) fruits, even when they 
are visually smaller in the background and between 
the leaves (Figure 3B). Another adaptation that could 
further improve model detection is that suggested by Liu 
et al. (2020). The authors adapted the YOLO algorithm 
to use a circular bounding box rather than the traditional 
rectangular one. Because of the tomato shape, the 
circular bounding box allowed for better object detection 
under challenging lighting conditions, branch and leaves 

occlusion, and overlapping of tomatoes. The proposed 
algorithm performed better than the other methods 
and improved detection under occlusion conditions. In 
Figures 3A, 3B, and 3C, YOLOv4 showed to generally 
better detect occluded/overlapped objects, even under 
challenging settings.

The high performance of YOLOv3-tiny (Figure 
3A) deserves special attention. There seems to be a 
surplus of detections (bounding boxes) in the figure, 
which, despite resulting in high recall (0.92), results 
in lower precision (0.70) because of the large number 
of false positives (see Eq. 2 and 3). This is an outcome 
of the poorly predicted boxes for this specific image 
not adequately removed by the confidence threshold 
and non-maximum suppression post-processing. In 
contrast, the YOLOv3 model predicted coffee fruits in 
this figure with lower confidence, resulting in fewer 
boxes and higher precision (0.83), but much lower 
recall (0.42) and mAP. Despite a similar mAP to that 
obtained by the YOLOv3-tiny and YOLOv4 models for 
the example image (Figure 2), YOLOv4 resulted in far 
better predictions, with both high precision (0.88) and 
recall (0.88).

To better assess the trade-offs between precision 
and recall, Figure 4 shows the distribution of 
performance scores (mAP, precision, and recall) for 
each test set image. Despite the overall higher median 
and mean mAP obtained from all images in the test 
set for YOLOv4, there are clear trends in the precision 
and recall trade-offs that can be assessed. The mAP is 
obtained by considering a set of different confidence 
thresholds, whereas the final precision and recall are 
calculated assuming a pre-set confidence threshold (c = 
0.25). As discussed above, obtaining high precision at the 
expense of too many false positives can lead to a lower 
recall. For example, the YOLOv3 algorithm shows, for 
most network sizes, to score relatively higher precision 
but lower recall. In contrast, the YOLOv4 algorithm 
shows the opposite behavior, scoring relatively higher 
recall and lower precision.

Despite observing general trends for the precision-
recall trade-offs for the different algorithms, the results 

Figure 2 – Performance of the different computer vision algorithms and network sizes assessed to detect coffee fruits on branches. mAP = 
mean values of average precisions.



4

Bazame et al. Detection of coffee fruits using computer vision

Sci. Agric. v.80, e20220064, 2023

may partially be attributed to the random weight 
adjustment process during training. In this study, the 
final weights of the models were set as the weights 
obtained after the training iteration that resulted in the 
highest mAP for the test set from all 6000 iterations. 
However, predictions from weights scoring similar mAP 
can present different precision-recall trade-offs. Thus, 
ultimately, the final user of the model decides whether it 
is more important to identify all true positives regardless 
of a few false positives, or if predicting false positives can 
be detrimental/costly to the final objective. In general, 
similar values of precision and recall indicate a well-
balanced model and a robust precision-recall trade-off.

Performance by detection class

The average precision (AP) obtained for each class 
highlights a close performance between YOLOv4 and 
the other models for detecting ripe and overripe coffee 
fruits, especially for more extensive network sizes 
(Figure 5). For example, for ripe fruits and a network 

Figure 3 – Coffee fruits detections made by YOLO algorithms considering a network size of 800 × 800 pixels for three arbitrary images 
representing fruits (A) in the shade, (B) between the leaves, and (C) overlapped.

size of 800 × 800 pixels, the YOLOv4-tiny, YOLO-v3, 
and YOLOv3-tiny scored APs of 83 %, 84 %, and 80 %, 
respectively, while YOLOv4 scored an AP (84 %) higher 
by 1 %, 0.4 %, and 4 %, respectively. For overripe 
fruits, the YOLOv4-tiny, YOLO-v3, and YOLOv3-tiny 
scored APs of 78 %, 77 %, and 76 %, respectively, while 
YOLOv4 scored an AP (80 %) higher by 2 %, 3 %, and 
4 %, respectively.

YOLOv4 stands out in detecting unripe (green) 
coffee fruits, which are generally more difficult to detect 
because of leaves on the branches and in the background. 
YOLOv4 scored an AP of 80 % for unripe fruits and a 
network size of 800 pixels, which is higher by 4 %, 7 %, 
and 4 % than those scored by YOLOv4-tiny, YOLOv3, 
and YOLOv3-tiny, respectively. The difference is even 
higher when smaller network sizes are considered. 

Other computer vision systems were also developed 
to predict the maturation stage of coffee fruits on tree 
branches (Ramos et al., 2018). The computer vision 
system classifies coffee fruits after building a 3D model 
of on-branch coffee fruits and results in classification 
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background, including leaves and shades, whereas 
Bazame et al. (2021) collected data inside the harvester 
where the environment had controlled illumination 
and contrasting background. Besides, the authors also 
registered a lower mAP score for overripe fruits. 

A further opportunity for the present study could be 
related to predicting coffee yield from full lateral pictures 
of coffee plants, as proposed by Idol and Youkhana 
(2020). However, obtaining such information for field 
scales requires collecting images along with geographic 
coordinates at higher rates. Besides, data collection at 

Figure 4 – Distribution of performance scores obtained for each image of the test set by the different computer vision algorithms and network 
sizes used in this study. mAP = mean values of average precisions.

Figure 5 – Performance of the different computer vision algorithms and network sizes assessed for each class of detection. AP = Average 
precision.

efficacy between 42 % and 92 % for the different classes 
of the maturation stage. A computer vision model to 
detect coffee fruits and classify their maturation stage 
during harvest was proposed by Bazame et al. (2021). 
The authors then mapped the maturation stage across 
the coffee plantation with an mAP of 86 %, 85 %, and 
80 % for unripe, ripe, and overripe fruits, respectively. 
The lower mAP for unripe fruits in this study, compared 
to that of Bazame et al. (2021), can be attributed to the 
environment where images were taken. Here, pictures 
were taken from on-branches coffee fruits with a diverse 
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higher rates by autonomous systems has been proposed 
in different studies. For example, an autonomous robot to 
monitor vineyard water potential was proposed by Saiz-
Rubio et al. (2021). Autonomous robots have even been 
proposed to perform actions, such as tomato harvesting 
(Liu et al., 2020), strawberry harvesting (Xiong et al., 
2020), and weed control (Wu et al., 2020b).

Performance for different object densities

It is harder for a smaller network to detect coffee fruits in 
higher object-density scenarios. This is because resizing 

images to lower resolution may blur the boundaries 
of fruits. This behavior is evident in Figure 6, which 
shows lower median mAP (red dashed lines) obtained 
for smaller networks and steeper slopes for the ordinary 
least squares regression fitted to data (blue line). For 
example, the YOLOv3 and YOLOv3-tiny models resulted 
in mAP lower than 70 % and 57 %, respectively, in 50 % 
of the images in the test set for a network size of 320 × 
320 pixels. YOLOv4-tiny and YOLOv4 were more robust 
to extract features and avoid these effects for the smaller 
network sizes. For YOLOv4-tiny and YOLOv-4, 50 % of 
the test set images scored mAP equal to or higher than 

Figure 6 – Performance obtained by the different computer vision algorithms and network sizes assessed for each image of the test set 
separately. The red dashed line represents the median mAP. The blue line represents the ordinary least squares regression fit to the data. 
Steeper slopes mean that it is more difficult for the model to detect objects when object density is higher in the dataset. mAP = mean values 
of average precisions.
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79 % and 80 % for a network size of 320 × 320 pixels. 
An adaption to the YOLOv3 model for the detection of 
litchi (YOLOv3-Litchi) in images with a high density 
of fruits has been proposed by Wang et al. (2021). The 
authors adapted the model to have fewer convolutions 
than the original YOLOv3 and predict from feature 
maps at higher resolutions, which increased accuracy 
to detect objects in images with high densities of small 
fruits.

As the network size and, therefore, the resolution 
of resized images increases, the problem is mitigated. 
For example, the regression slopes for the YOLOv3-
tiny models decreased from –0.975 to –0.329 for 
network sizes from 320 to 800 × 800 pixels. Overall, 
the regressions adjusted more gentle slopes (closer to 
0) for scores obtained using larger network sizes. This 
is especially true for the YOLOv4 algorithm, whose 
slope was only –0.257 for the network size of 800 × 800 
pixels. Input images at higher resolutions mean more 
extensive networks and usually better performance 
in object detection, but it may also increase the time 
required to predict (Wang et al., 2021) or constrain the 
model to hardware with higher computing power. The 
YOLOv4-tiny also performed better than YOLOv3-tiny 
in this regard, even at smaller network sizes, which can 
be attributed to its more robust feature extractor.

Conclusions

In this study, the YOLOv3 and YOLOv4 object detection 
algorithms were implemented to detect and classify the 
maturation stage of coffee fruits on tree branches. For 
an image input resolution of 320 × 320 pixels, YOLOv4, 
YOLOv4-tiny, YOLOv3, and YOLOv3-tiny scored a 
mean average precision (mAP) of 73 %, 68 %, 62 %, 
and 40 %, respectively. For larger networks, considering 
images of 800 × 800 pixels, these models scored mAPs 
of 81 %, 79 %, 78 %, and 77 %, respectively. 

The developed models better detect ripe coffee 
fruits, which better contrast the background of the images. 
In contrast, the performance to detect unripe (green) 
fruits was considerably lower, which can be attributed 
to the coffee fruits being partially occluded by leaves 
(similar color) and in the shade. Overall, the YOLOv4 
algorithm was more robust into detecting unripe fruits 
and less influenced by object density in images.

Future studies could advance this research in many 
directions. The image acquisition could be associated 
with geographic coordinates or even captured by an 
automated system, allowing for the spatialization of such 
information. The continuous collection of images from 
all sides of coffee plants could also be used to estimate 
fruit count and therefore,plant yield. 
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