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INTRODUCTION

Due to the economic importance of coffee 
for Brazil, one of the main focuses of research in the 
agricultural sector refers to the development of coffee 
tree. A relevant variable to be considered in such 

research is the plant height, because in addition to 
being representative of vegetative development, it is 
also correlated with productivity (ASSIS et al., 2014; 
PEREIRA et al., 2016; SILVA et al., 2019).

Modeling of the coffee tree growth 
curve using nonlinear regression models allows the 
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ABSTRACT: When modeling growth curves, it should be considered that longitudinal data may show residual autocorrelation, and, if this 
characteristic is not considered, the results and inferences may be compromised. The Bayesian approach, which considers priori information 
about studied phenomenon has been shown to be efficient in estimating parameters. However, as it is generally not possible to obtain marginal 
distributions analytically, it is necessary to use some method, such as the weighted resampling method, to generate samples of these distributions 
and thus obtain an approximation. Among the advantages of this method, stand out the generation of independent samples and the fact that it 
is not necessary to evaluate convergence. In this context, the objective of this work research was: to present the Bayesian nonlinear modeling 
of the coffee tree height growth, irrigated and non-irrigated (NI), considering the residual autocorrelation and the nonlinear Logistic, Brody, 
von Bertalanffy and Richard models. Among the results, it was found that, for NI plants, the Deviance Information Criterion (DIC) and the 
Criterion of density Predictive Ordered (CPO), indicated that, among the evaluated models, the Logistic model is the one that best describes 
the height growth of the coffee tree over time. For irrigated plants, these same criteria indicated the Brody model. Thus, the growth of the 
non-irrigated and irrigated coffee tree followed different growth patterns, the height of the non-irrigated coffee tree showed sigmoidal growth 
with maximum growth rate at 726 days after planting and the irrigated coffee tree starts its development with high growth rates that gradually 
decrease over time.

RESUMO: Na modelagem de curvas de crescimento deve-se considerar que dados longitudinais podem apresentar autocorrelação residual, 
sendo que, se tal característica não é considerada, os resultados e inferências podem ser comprometidos. A abordagem bayesiana, que 
considera informações à priori sobre o fenômeno em estudo tem se mostrado eficiente na estimação de parâmetros. No entanto, como 
geralmente não é possível obter as distribuições marginais de forma analítica, faz-se necessário a utilização de algum método, como o método 
de reamostragem ponderada, para gerar amostras dessas distribuições e assim obter uma aproximação para as mesmas. Dentre as vantagens 
desse método, destaca-se a geração de amostras independentes e o fato de não ser necessário avaliar convergência. Diante desse contexto, 
o objetivo deste trabalho foi apresentar a modelagem não linear bayesiana do crescimento em altura de plantas do cafeeiro, irrigadas e não 
irrigadas (NI), considerando a autocorrelação residual e os modelos não lineares Logístico, Brody, von Bertalanffy e Richards. Em vista dos 
resultados, verificou-se que, para as plantas NI, o DIC e CPOc, indicaram que, dentre os modelos avaliados, o modelo Logístico é o que 
melhor descreve o crescimento em altura do cafeeiro ao longo do tempo. E, para as plantas irrigadas, esses mesmos critérios indicaram o 
modelo Brody. Assim, o crescimento da planta do cafeeiro não irrigado e irrigado seguiram padrões de crescimento distintos, a altura do 
cafeeiro não irrigado apresentou crescimento sigmoidal com taxa máxima de crescimento aos 726 dias após o plantio, já o cafeeiro irrigado 
inicia seu desenvolvimento com altas taxas de crescimento que vão diminuindo aos poucos com o tempo.
Palavras-chave: autocorrelação residual, modelos não lineares, modelo Logístico, modelo Brody, modelo Von Bertalanffy, Modelo Richards.
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researcher to describe growth over time and obtain 
information of practical interest, such as the maximum 
height at adult stage and the speed of growth. They 
are important to characterize the development of 
plants (PEREIRA et al., 2014; REIS et al., 2014; 
FERNANDES et al., 2017; SARI et al., 2018; SILVA 
& SAVIAN, 2019; JANE et al., 2020; SILVA et al., 
2021; MENDES et al., 2021).

To model the growth curve, it should be 
considered that the growth data taken over time may 
show residual autocorrelation (PEREIRA et al., 2016; 
JANE et al., 2020; SILVA et al., 2021). However, 
in several applied researches, it appears that this 
characteristic is not incorporated in the modeling, and 
may compromise the results and inferences (MUNIZ 
et al., 2017).

An approach that has been shown to be 
efficient in estimating parameters is the Bayesian 
approach, which considers both observations and 
model parameters as random variables. Thus, 
an a prior distribution for the parameters is 
specified, denoted by P (θ) - which represents in 
terms of probability the pre-existing knowledge 
about the parameters - and a joint probability 
distribution for the sampling data, called the 
likelihood function L (θ ǀ Y) (BOX & TIAO, 1992; 
PAULINO et al., 2018; BOLSTAD & CURRAN, 
2016). The combination of this information, 
by Bayes’ theorem, results in the posterior 
distribution of θ. This distribution, indicated by 
P (θ ǀ Y) represents the updated knowledge about 
the parameters, associating the researcher initial 
knowledge with the information from the sample:  

 where 
P(Y) is a normalizing constant.

Among the advantages of the Bayesian 
approach, stands out satisfactory modeling even with 
a relatively small sample and obtaining credibility 
intervals (MARTINS FILHO et al., 2008; SILVA et 
al., 2020; MACEDO et al., 2017).

In order to make inferences about a given 
parameter θi, i= 1, 2, ..., p, the posterior marginal 
distribution of this parameter should be obtained, 
which is given by the integral of the posterior 
distribution in relation to the other parameters. Due 
to the complexity of these integrals, in most cases, 
obtaining the marginal distributions is not done in 
an analytical way, making it necessary to use some 
approximation method. Markov Chain Monte Carlo 
methods (MCMC) have been the most used in the 
generation of samples from a posterior distribution, 
thus making it possible to obtain an approximate 

density. However, as they are iterative, these methods 
may take time to converge and require the researcher 
to use convergence assessment diagnostics (COLE et 
al., 2012).

An alternative method to the MCMC, 
which generates independent samples, does 
not require convergence assessment and is 
computationally faster, is the weighted resampling 
method, proposed by RUBIN (1987) (COLE et al., 
2012; LOPES et al., 2012). The generation of samples 
by this method, also known as sampling-importance 
resampling (SIR), is done in two stages: initially, 
the values of a candidate distribution are generated, 
and in the second stage, resampling is performed 
considering the weight (probability) assigned to each 
value generated. According with COLE et al. (2012) 
the SIR has a more attractive and easy-to-implement 
theory, so that researchers can focus their efforts on 
eliciting prior distributions.

Although, there are applied researches 
in the literature presenting the fitting of regression 
models using Bayesian methods, such researches 
generally use linear and nonlinear models . They are 
limited to the assumption of residual independence 
(ANDRADE FILHO et al.; 2010; MARTINS FILHO 
et al.; 2008; SILVA et al., 2020; MACEDO et al., 2017) 
or consider autocorrelation and use linear models 
(CHIB & GREENBERG, 1994; MENZEFRICKE, 
1999). Specifically, in the study of coffee tree growth, 
there is no research in the literature using a Bayesian 
approach considering both nonlinear models and 
residual autocorrelation.

Given this context, the objective of 
this study was: to present the Bayesian nonlinear 
modeling of coffee tree height growth, irrigated and 
non-irrigated, considering residual autocorrelation 
and nonlinear Logistic, Brody, von Bertalanffy and 
Richards models.

MATERIALS   AND   METHODS

Data analyzed comes from an experiment 
carried out with the cultivar Rubi MG1192, in the 
experimental area of the Department of Agriculture, 
Federal University of Lavras, in Lavras, state of 
Minas Gerais.

Coffee crop was planted in January 2001, 
using the 4m x 1m spacing, which corresponds to 
the planting of 2,500 plants per hectare. During 
the conduct of the experiment, crop treatments and 
phytosanitary control were carried out in accordance 
with the requirements of the crop. Fertilizer 
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application and liming were done according to the 
analysis of soil and micronutrients provided by 
foliar fertilization.

The design used was in randomized 
blocks, with four replications. In each block, six 
irrigation regimes were drawn; however, in this 
study, only two regimes were analyzed: non-irrigated 
(NI) and irrigated at 60 kPa (most commonly used 
in this region). The irrigation system implanted in 
the field was the drip system. Irrigations at 60 kPa 
occurred when the tensiometer, at a depth of 25 cm, 
recorded this tension value on the tensimeter, which 
is measured in kilopascal (kPa).

Each experimental unit consisted of three 
planting rows with ten plants in each row, the eight 
central plants of the central row were considered useful. 
The plant height was represented by the average of 
the eight useful plants measured in centimeters (cm), 
measured quarterly, in the period between May 2001 
and August 2006, totaling 22 measurements.

To analyze this growth, the nonlinear 
regression models in table 1 were used (PEREIRA 
et al., 2014; PEREIRA et al., 2016). Considering 
that the residuals (white noise) follow a Normal 
distribution, that is, ui ~ N(0, σ2

u), we have the 
following expression for the likelihood function: 

.
Y represents the vector formed by the 

observed values yi and, the expected value μi and 
θ vary according to the model and the presence 
and order of residual autocorrelation, which were 
verified through the graphs of the autocorrelation 
(acf) and partial autocorrelation (pacf) functions 

of the residuals of the ordinary model (considering 
all assumptions met). In cases where acf suggested 
residual dependency, pacf was used to identify the p 
order of the AR (if AR(1), AR(2), etc) (MORETTIN 
& TOLOI, 2006). 

It should be noted that the equations 
presented in table 1 represent the expression 
for the mean µ that will be substituted in the 
likelihood presented in the previous paragraph. In 
this parameterizations, ti indicated the evaluation 
times, in days after planting: ti = 90, 180, ..., 1980 
days; α is the upper horizontal asymptote, that 
is, it represents the maximum expected height; β 
indicates the abscissa of the inflection point in the 
Logistical and Richards models, in Brody and Von 
Bertalanffy it is a scale parameter without direct 
biological interpretation; δ is the parameter that 
defines the shape of the curve and determines in 
what proportion of α the inflection point occurs; 
k indicates the growth rate and determines the 
efficiency of growth: the higher this value, the 
less time it will take for α to be reached; ei is the 
residual which is assumed to be independently 
and identically distributed according to a Normal 
distribution with zero mean and homogeneous 
variance, that is, ei ~ N(0, σ2).

Thus, the adjustments that 
presented residual autocorrelation of order 1 
were redone by the generalized least squares 
method, incorporating in the modeling the 
autoregressive of order 1, φ1 parameter, given by: 

Similarly, for those who presented 
autocorrelation of order 2, the autoregressive 
parameter of order 2, φ2 was incorporated:

 

Table 1 - Expected value and autocorrelation structure for the residuals of the Logistic, Brody, von Bertalanffy and Richards models 
considering the data referring to the non-irrigated (NI) and irrigated regimes. 

 
NI Expected value (μi) 

Logistic   
Brody   
Von Bertalanffy   
Richards  
Irrigated Expected value (μi) 
Logistic  
Brody  
von Bertalanffy  
Richards  
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,

Where ,  e  correspond to 
the residuals generated in the times ti, ti - 1 e ti - 2  

respectively and  is the white noise, obviously 

in a structure without autocorrelation  
(MORETTIN & TOLOI, 2006).

The prior distributions were elicited based 
on the technique known as “prior of specialist”, 
which determined a plausible range of occurrence for 
the parameters and some measure of position, such 
as the mean, according to an expert’s knowledge of 
the phenomenon studied and about parametric space 
of parameters. According to MOALA & PENHA 
(2016), the elicitation of a prior distributions for the 
parameters constitutes an important phase in carrying 
out the Bayesian analysis. Thus, after exploratory 
analysis of the behavior of the growth curve 
parameters and about Gamma and Beta distributions, 
the following priorities were elicited.

For parameter α, which indicated an 
estimate of the maximum height to be reached by 
coffee trees; therefore α > 0 (SARI et al., 2018), a 
Gamma distribution with hyperparameters 10 and 
0.04 was considered as a prior distribution.

For parameter β, which in the Logistic 
and Richards models, indicated the moment when 
the growth rate is maximum (inflection point) and 
in the other models does not have a direct practical 
interpretation (SARI et al., 2018), a Gamma 
distribution with hyperparameters 1.5 and 0.003 was 
also considered.

Parameter k, which is interpreted as 
a growth index, generally assumes low values, 
concentrated near the lower limit of the interval (0.1) 
(SARI et al., 2018). Thus, a Beta distribution (2.25; 
1,500) was considered as a prior distribution. 

When using the Richards model, specifying 
an a prior distribution for the δ parameter is also 
necessary. For this parameter, which can assume 
positive or negative values, a Normal was considered 
with a mean of 0.11 and standard deviation 10.

A generalized Beta distribution was 
defined as a prior for φ1 whose occurrence interval is 
[-1, 1], because according to MORETTIN & TOLOI 
(2006), for the process to be stationary, the following 
condition must be satisfied: |φ1|<1.

The generalized Beta distribution is 
obtained as follows: whether V ~ Beta (h1, h2) defined 
in the interval (0, 1), then the random variable defined 
by W= (n-m)V+m in the finite interval [m, n] follows 
a generalized Beta distribution (h1, h2) (MCDONALD 

& XU, 1995). Thus, when considering V ~ Beta (3, 
2), the random variable φ1 defined as φ1 = (1 + 1).V-1 
has a generalized Beta distribution (3, 2) defined in 
the interval [-1, 1]. Therefore, the prior distribution 
of φ1 is given by [2.Beta (3, 2) -1].

The prior distribution established for 
parameter φ2 was a Uniform (-1, 1), with the following 
stationary conditions being observed: φ1+ φ2<1, φ2 - 
φ1<1 and | φ2|<1.

Hyperparameters  determination of the 
prior distributions (which was done in order to 
obtain large variance) and the attribution of an non-
informative distribution for parameter φ2 is based 
on the fact that the literature is scarce in research 
in the plant area related to Bayesian growth curve 
modeling considering the autocorrelation between 
the residuals.

For each model analyzed, independence 
between the parameters was considered. Thus, the 
joint prior distribution for the vector of parameters of 
interest θ, P(θ), is given by the prior product of each 
parameter. The number of parameters in θ varies 
depending on the model and the autocorrelation 
structure indicated by the graphic of pacf.

Using Bayes’ theorem and replacing the 
expressions obtained for the likelihood function 
and the joint a prior distribution, and discarding the 
integration constant, we have that the a posterior 
distribution P (θ | Y), for each case, is given by:

.
To obtain an informative summary 

on the a posterior marginal distribution of each 
parameter, it is necessary to solve integrals of the 

form: , where h(θ) is 
a conveniently chosen function. However, as it is 
not possible to solve these integrals analytically, 
the sampling-importance resampling (SIR) based 
on SMITH & GELFAND (1992) theory, was used 
to generate samples. Subsequently, estimates 
of the mean, mode and highest a posterior 
density (HPD) were obtained for the parameters 
(PAULINO et al., 2018).

To indicate the model that presented the best 
fit, considering the Bayesian approach, the Deviance 
information criterion - DIC (SPIEGELHALTER 
et al., 2002) and the criterion of density predictive 
ordered - CPO (GELFAND & DEY, 1994) were 
used. As mentioned in ANDRADE FILHO et al. 
(2010), lowest value for DIC and the highest for CPO 
indicated better fitted. 
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All the procedures necessary for this 
research, such as the generation of samples, summary 
of distributions, obtaining graphics, CPO and DIC, 
among others, were performed using the R software 
(R DEVELOPMENT CORE TEAM, 2020), mainly 
with packages nlme (PINHEIRO et al., 2019) and 
coda (PLUMMER et al., 2006).

RESULTS   AND   DISCUSSION

Table 2 presents the estimates obtained for 
the mean and mode a posterior, as well as the HPD 
interval, for all parameters of the adjusted models, 
considering the non-irrigated regime (NI).

Analyzing table 2, it can be seen that, in 
general, the estimates for the mean and the mode a 
posterior of the parameters β and k for the Logistic, Brody 
and von Bertalanffy models are close, indicating that the 
a posterior marginal distribution of these parameters can 
be considered symmetrical. When analyzing the growth 
of the tomato plant fruit, MENDES et al. (2021) also 
reported that the marginals of the parameters β and k, for 
the Logistic model are symmetrical.

However, when comparing the upper 
quantile of the HPD interval of the marginal 
distribution of the k parameter referring to the Brody 
model (qhpd), whose area below it is 97.5%, with the 

quantile of the Normal distribution (qn), considering  
k̅=0.00061 and sk = 0.00006 (not shown in the table) 
have: qhpd = 0.00071 and qn = 0.000727. Thus, as qn > 
qhpd it is concluded that the Normal has tails heavier 
than the marginal of parameter k.

Similarly, for parameter β of the Brody 
model, we have that qhpd = 0.97142 and qn = 0.974174 
(considering β=0.9563  and sβ=0.00912 ). Therefore, 
as qn > qhpd it follows that Normal has tails heavier 
than the marginal of parameter β.

Regarding the estimates obtained for the 
parameters of the Richards model, there is a marked 
difference between the values of the mean and mode 
a posterior (Table 2). This indicate that the marginals 
of the parameters are asymmetric, and according to 
SAVIAN et al. (2009) and SILVA et al. (2020), in 
future studies, this information can be considered in 
specification of prior distributions.

Still in relation to table 2, it can be seen 
that, in general, the HPD intervals obtained for the 
parameters were significant, affirming the efficiency 
of the Bayesian methodology in the estimation of 
parameters, reported in several studies, such as 
ANDRADE FILHO et al. (2010), MARTINS FILHO 
et al. (2008) and SAVIAN et al. (2009), among others.

Table 3 lists the estimates obtained for 
the mean and mode a posterior as well as the HPD 

Table 2 - Posterior estimates for the mean, mode and HPD interval of the parameters of the Logistic (L), Brody (B), von Bertalanffy 
(VB) and Richards (R) models, considering the data referring to the NI regime. 

 

Models Parameters Mean Mode HPD95% 

L with AR(1) 

α 
β 
k 
φ1 

179.5 
726.2 

0,00224 
0.5194 

179.3 
726.0 

0.00223 
0.5190 

[171.50677 ; 186.60914] 
[672.05286 ; 778.59692] 

[0.00202 ; 0.00247] 
[0.21992 ; 0.81319] 

B with AR(2) 

α 
β 
k 
φ1 
φ2 

241.5 
0.9563 

0.00061 
0.1794 
-0.6010 

242.4 
0.9563 

0.00061 
0.1758 
-0.5952 

[221.09566 ; 261.97139] 
[0.94188 ; 0.97142] 
[0.00051 ; 0.00071] 
[-0.13248 ; 0.46234] 
[-0.91725 ; -0.32907] 

VB with AR(2) 

α 
β 
k 
φ1 
φ2 

198.5 
0.5399 

0.00121 
0.4292 
-0.5577 

198.9 
0.5394 

0.00120 
0.4381 
-0.5547 

[188.70933 ; 208.02190] 
[0.51928 ; 0.55977] 
[0.00108 ; 0.00134] 
[0.14370 ; 0.74024] 

[-0.89605 ; -0.25650] 

R with AR(2) 

α 
β 
k 
δ 
φ1 
φ2 

215.4 
217.9 

0.00084 
0.2575 
0.1879 
-0.6048 

219.5 
157.3 

0.00081 
0.1950 
0,2019 
-0.6002 

[189.42799 ; 242.42765] 
[9.93506 ; 425.34463] 
[0.00064 ; 0.00105] 
[0.06191 ; 0.44509] 
[-0.12893 ; 0.49771] 
[-0.90362 ; -0.28628] 
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interval, for all parameters of the adjusted models, 
considering the irrigated regime.

Based on table 3, it appears that, also 
in the irrigated regime, the HPD intervals were 
significant for all parameters. The interval obtained 
for parameter α, considering the adjustment of the 
Brody model, for example, indicates that the most 
likely maximum heights, for coffee trees at the adult 
phase, are between 210.6 cm and 234.8 cm.

Still in relation to Table 3, there was 
a marked difference between the estimates for 
the mean and mode a posterior of the parameter 
φ1 for the von Bertalanffy and Logistic models, 
suggesting that the marginals are asymmetric to 
the left. Furthermore, the HPD intervals for the 
φ parameter do not include zero (Table 2 and 
Table 3), emphasizing that the autocorrelation is 
significant in all studied scenarios. As highlighted 
by Silva et al. (2021), incorporating residual 
dependence may not necessarily improve the 
quality of the fit, but it is more consistent, since 
the assumption of independence is not satisfied in 
longitudinal data modeling.

The differences between the values 
obtained for the mean and mode a posterior 
for all parameters of the Richards model were 
also accentuated, indicating that the marginal 
distributions for its parameters are asymmetric. 
Such behavior was also verified for the marginal 
distributions of parameters of this model considering 
the NI regime (Table 2).

To compare the quality of fit provided by 
the four models analyzed, the Deviance information 
criterion (DIC) and the criterion of predictive ordered 
(CPO) density were calculated, the results are listed 
in table 4. As mentioned lowest value for DIC and the 
highest for CPO indicated better fitted.

Considering the NI regime, the estimates 
obtained for both adopted criteria indicate that, 
among the models evaluated, the Logistic model best 
describes the growth in height of coffee trees, as this 
model presented the lowest value for DIC and the 
highest for CPO (Table 4). The marginal distributions 
of each parameter of the Logistic model for the NI 
regime are illustrated in figure 1.

Regarding the irrigated regime, the CPO 
and DIC estimates indicated that the Brody model, 
among the evaluated models, is the one that best 
represents the growth curve in height of the irrigated 
coffee tree (Table 4). The marginal distributions of 
each parameter of the Brody model for the irrigated 
regime are illustrated in figure 2.

The growth of the NI and irrigated coffee 
trees followed different growth patterns. As the 
Logistic model was more suitable to describe the NI 
coffee tree height, sigmoidal growth was observed 
with maximum growth rate at 726 days after planting 
(estimate of parameter β of the Logistic model in 
Table 2). For the irrigated coffee tree, the Brody 
model was more suitable, indicating that the growth 
started at the maximum growth rate decreasing over 
time (SANTOS et al., 2019). Moreover, the HPD for 

 

Table 3 - Posterior estimates for the mean, mode and HPD interval of the parameters of the Logistic (L), Brody (B), von Bertalanffy 
(VB) and Richards (R) models, considering the data referring to the irrigated regime. 

 

Models Parameters Mean Mode HPD95% 

L with AR(1) 

α 
β 
k 
φ1 

190.5 
602.4 

0.00237 
0.6597 

190.7 
599.8 

0.00237 
0.7019 

[184.00125 ; 196.90064] 
[557.92723 ; 642.93790] 

[0.00212 ; 0.00259] 
[0.43056 ; 0.91784] 

B 
α 
β 
k 

222.3 
0.9386 

0.00089 

222.1 
0.9396 

0.00088 

[210.58702 ; 234.77761] 
[0.91767 ; 0.96146] 
[0.00077 ; 0.00100] 

VB with AR(1) 

α 
β 
k 
φ1 

204.1 
0.5021 

0.00140 
0.5139 

204.2 
0.5013 

0.00140 
0.5419 

[195.48090 ; 212.08980] 
[0.47916 ; 0.52327] 
[0.00125 ; 0.00154] 
[0.19440 ; 0.81738] 

R 

α 
β 
k 
δ 

206.5 
189.5 

0.00104 
0.1693 

208.8 
98.9 

0.00101 
0.1211 

[188.23719 ; 223.16551] 
[0.91410 ; 376.65874] 
[0.00088 ; 0.00119] 
[0.00858 ; 0.33983] 
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the α parameter of the Logistic model for NI coffee 
was 171cm to 186 cm (Table 2) and for the Brody 
model for irrigated coffee tree it was 210 cm to 234 
cm (Table 3), thus indicating that the irrigated coffee 
tree had a maximum height greater than the non-
irrigated plant, as there was no intersection in the 
intervals. Importantly, one of the great advantages 
of working with the Bayesian methodology is to 
obtain the credibility interval (HPD), which is the 
interval with (1 - α)% probability that contains the 

most plausible values for the parameter, which allows 
direct comparison between intervals (GUEDES et al., 
2014; SILVA et al., 2020).

The growth pattern, as well as the values 
observed for the mean height of non-irrigated coffee 
trees and the graphical representation of the Bayesian 
adjustment of the Logistic model with AR(1), as well 
as the values observed for the irrigated coffee trees 
and the Bayesian adjustment of the Brody model are 
shown in figure 3.

Table 4 - Estimates for the DIC and CPO selection criteria, considering data referring to the non-irrigated (NI) and irrigated regimes and 
the Logistic (L), Brody (B), von Bertalanffy (VB) and Richards (R) models.  

 

------------------------------------------NI------------------------------------------ --------------------------------Irrigated----------------------------- 

Models CPO DIC Models CPO DIC 
L with AR(1) -267.779 36.573 L with AR(1) -268.981 36.851 
B with AR(2) -309.362 39.569 B -260.085 33.366 
VB with AR(2) -309.362 39.582 VB with AR(1) -267.883 36.563 
R with AR(2) -402.479 63.915 R -316.759 59.042 

 

Figure 1 - Sample histograms of the marginal distributions of parameters of the Logistic model 
considering first order residual autocorrelation and the NI regime. 
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CONCLUSION

For non-irrigated plants, the Bayesian 
information criterion and the criterion of predictive 
ordered density indicated that, among the evaluated 
models, the Logistic model is the one that best 
described the coffee plant height growth over time. 

For irrigated plants, these same criteria indicated the 
Brody model. Thus, the growth of the non-irrigated 
and irrigated coffee trees followed different growth 
patterns, the NI coffee height showed sigmoidal growth 
with maximum growth rate at 726 days after planting 
and the irrigated coffee tree starts its development with 
high growth rates that gradually decrease over time.

Figure 2 - Sample histograms of the marginal distributions of parameters of the Brody 
model considering data referring to the irrigated regime. 

Figure 3 - Mean height of coffee trees and Bayesian fitting of the Logistic with AR(1) and 
Brody models considering the NI and irrigated regimes, respectively.
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