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Roasted and ground coffee is targeted by fraudulent addiction of products. In this way the 
determination of contaminants in coffee has economic and nutritional importance. In this study, the 
coffee adulteration by corn were detected using DSC (differential scanning calorimetry) and FTIR 
(Fourier transform infrared spectroscopy) coupled to PCA (principal component analysis), and 
PLS (partial least squares) models. Three different levels of roasted and ground Coffea arabica L. 
were used to prepare mixtures with roasted and ground corn. The level of adulteration used was 
between 0.5 to 40% (m/m). It was observed that both DSC and FTIR coupled with PCA are able 
to discriminate adulterated from unadulterated samples of coffee by corn at levels below 1%. 
PLS models were built with DSC and FTIR data reaching good correlation between the values of 
estimated and reference concentrations, with RMSECV (root mean square error of cross-validation) 
lower than 3.5% for DSC data and 2.7% for FTIR data.
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Introduction

The coffee drink is consumed throughout the world for 
being a symbol of hospitality, has stimulant properties and 
pleasant taste, which makes it an international commodity.1 
According to ICO (International Coffee Organization), 
global coffee consumption were about 150 million of bags 
or 9 million tons in 2014, and the estimate is an annual 
increase of 2.3%.2 Brazil is the leading exporter of coffee in 
the world. In 2015, Brazil exported 36.32 million bags of 
60 kg, an increase of 2.7% relative to 2014, representing 
a revenue of US$ 6.15 billion only in exports, according to 
CECAFÉ (Council of coffee exporters from Brazil).3 The 
estimate world production in 2016 is 155.7 million of bags.4

Due to the economic importance of coffee, the 
roasted and ground coffee turns target of adulterants by 
mixing lower value products that have similar physical 
characteristics, like: bark and branches of coffee, corn, 
rice, barley, rye and caramelized sugar. However, the 
adulterations not only generates higher profits for traders, 
but also loss in quality (smell and taste) and nutritional 
value of the product, being dangerous in cases of foodborne 
illness.5-7 To this study, the adulteration by corn was chosen 
because corn is common in south region of Minas Gerais 
State and have low cost value in relation to coffee.

The Normative Instruction No. 16, May 24, 2010 of 
MAPA (Brazilian Ministry of Agriculture and Supply) has 
the aim of assurance in the quality of roasted and ground 
coffee, and preconize that the maximum level allowed of 
impurities (rusks, sediment, waste from the coffee, seeds 
from another species, etc.) is 1% (m/m).5

Some analytical methods used in the analysis of 
adulterations in coffee are gas (GC)8,9 and liquid 
chromatography (LC),1,10 electrophoresis,11 microscopy12 
and infrared spectroscopy.7,13-16 These methods requires 
some kind of sample manipulation before the analysis, 
which is a critical step.

The thermal analysis, like DSC (differential scanning 
calorimetry), presents potential to detect adulterations 
because it is a technique that allows determining the purity 
and can provide quantitative information without the need 
of an elaborated sample preparation.17 DSC technique was 
successfully used to detect and/or quantify adulterants 
in extra virgin olive oil,18,19 canola oil,20,21 virgin coconut 
oil,22 sunflower oil,23 honey,24,25 butter,26 animal hair fibres27 
and animal fat.17 For example, the study conducted by 
Jafari et al.28 comparing GC, NMR (nuclear magnetic 
resonance) and DSC methods to detect adulteration in 
Iranian olive oils, showed that the traditional analysis by GC 
can be complemented, or substituted by modern techniques, 
like NMR or DSC.

The infrared spectroscopy is a very common 
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technique used to detect and quantify adulterants 
in many different kinds of products, like foods,29-37 
pharmaceutical drugs,38,39 and drugs of abuse.40 There 
are a great number of works in literature about analysis 
of coffee using infrared spectroscopy, in special 
DRIFTS (diffuse reflectance infrared Fourier transform 
spectroscopy).7,13-16,41 According to these authors, in 
general DRIFTS provides spectra with higher intensity of 
absorption than ATR-FTIR (attenuated total reflectance - 
Fourier transform infrared spectroscopy), and because of 
it DRIFTS can present better results, allowing complete 
discrimination between adulterated and non-adulterated 
coffee samples.7,15,41 However, ATR-FTIR has the region 
between 1500-400 cm-1, which is referred to as the 
fingerprint region. Absorption bands in this region are 
generally due to molecules and bonds vibrations, which 
are specific to each molecular composition and structure, 
allowing high selectivity data and potential for detect and 
quantify adulterations in coffee samples.42

The aim of this study was to evaluate the methodologies 
using DSC and ATR-FTIR coupled with chemometric 
analysis to detect and quantify the adulterations of roasted 
and ground Coffea arabica L. by corn. To discriminate the 
adulterated samples of coffee from non-adulterated ones 
were built PCA (principal component analysis) models, 
and to quantify the level of adulterations were built PLS 
(partial least squares) models.

Experimental

Materials

The green coffee beans used to develop this work 
are Coffea arabica L. and it were obtained from 
Prof Dr Rosemary G. F. A. Pereira (Universidade Federal 
de Lavras, UFLA). The coffee beans were roasted in three 
different levels: light (at 235 °C for 15 minutes), medium 
(at 240 °C for 20 minutes) and dark roasts (at 250 °C 
for 25 minutes). The corn sample employed to coffee 
adulteration was purchased from local market and roasted at 
240 °C in muffle during 10 minutes (until acquire the same 
color of roasted coffee). The process of roasting corn did 
not occur in the roaster to prevent contamination of it. After 
roasting, coffee and corn were ground using a traditional 
coffee grinder and sieved (35-65 mesh).

Eleven binary mixtures containing coffee (in different 
levels of roast) and corn were prepared in a range of 0.5 
to 40% (m/m) proportion related to corn (Table 1) using 
an analytical balance (Sartorius CP2P). The total weight 
of each mixture was 100 mg. Each sample was mixed by 
vortex for 5 minutes until homogenised.

Methods

Differential scanning calorimetry (DSC)
DSC experiments were conducted using a differential 

scanning calorimeter; model DSC-7020 EXSTAR 
(SII NanoTechnology Inc.). Samples (approximately 
3.0 mg) were placed in hermetically sealed aluminum pans 
and heated from an initial temperature of 50 °C to a final 
temperature of 600 °C in a heating rate of 10 °C min-1, 
under a dynamic nitrogen atmosphere (100 mL min-1). The 
DSC cell was previously calibrated with indium (purity 
greater than 99.99%, Tonset = 156.6 ± 0.3 °C, and heat of 
fusion of 28.6 ± 0.5 J g-1). After analysis, the DSC curves 
were converted in a matrix of temperature by heat-flow, 
exported to Matlab software and chemometrics analysis 
were conduced.

Thermogravimetric analysis (TG/DTG)
TG/DTG (thermogravimetry/differential thermo-

gravimetry) curves were recorded on a thermogravimetric 
ana lyze r  mode l  TG/DTA7300  EXSTAR (SI I 
NanoTechnology Inc.) employing the following parameters: 
temperature range of 25-600 °C; dynamic nitrogen 
atmosphere (50 mL min-1); heating rate of 10 °C min-1; 
Al2O3 crucibles; and approximately 10 mg of sample.

Attenuated total reflectance - Fourier transform infrared 
spectroscopy (ATR-FTIR)

Infrared spectra were recorded at room temperature 
(25 °C) using Nicolet iS50 FT-IR (Thermo Scientific) 
coupled with GladiATR (Pike Technologies) with a single 
reflection monolithic diamond and high pressure device. 

Table 1. Composition of samples

DSC samplesa ATR-FTIR samplesb Coffee / 
(% m/m)

Corn / 
(% m/m)

10, 21 and 32 10-12, 43-45 and 76-78 60 40

11, 22 and 33 13-15, 46-48 and 79-81 65 35

12, 23 and 34 16-18, 49-51 and 82-84 70 30

13, 24 and 35 19-21, 52-54 and 85-87 75 25

14, 25 and 36 22-24, 55-57 and 88-90 80 20

15, 26 and 37 25-27, 58-60 and 91-93 85 15

16, 27 and 38 28-30, 61-62 and 94-96 90 10

17, 28 and 39 31-33, 64-66 and 97-99 95 5

18, 29 and 40 34-36, 67-69 and 100-102 97 3

19, 30 and 41 37-39, 70-72 and 103-105 99 1

20, 31 and 42 40-42, 73-75 and 106-108 99.5 0.5

aSamples 10-20: light roast; 21-31: medium roast; 32-42: dark roast; 
bsamples 10-42: light roast; 43-75: medium roast; 76-108: dark roast.
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Each spectrum had the average of 64 scans from 525 to 
4000 cm-1, with 0.4 cm-1 resolution, and submitted to 
background subtraction. The measurements were recorded 
in absorbance. After analysis, all FTIR spectrum were 
imported to Matlab software and chemometrics analysis 
were conduced.

Chemometric analysis

Multivariate data analysis were carried out using 
MATLAB version 7.1 and PLS_toolbox version 5.8 
(Eigenvector Co.). In order to differentiate and to classify 
pure coffee from adulterated coffee with corn, the PCA 
was performed, and, to quantify, the PLS was performed.

At first, the DSC curves were normalized by the mass of 
sample used in each analysis, to eliminate the interference 
due to the variation of sample amount. Data pre-treatment 
techniques used were first derivative (Savitzky-Golay, 
window length: 15, polynomial order: 2), standard normal 
variate (SNV) and mean center. First derivative was to 
highlight the most important data of curve; the SNV is 
a weighted standardization that calculates the standard 
deviation of all variables for a given sample, and all data 
from this sample are normalized to this value, so the 
standard deviation of the sample is the unit (s = 1) and the 
normalization is weighted considering the amounts of each 
sample individually.43,44 The optimal numbers of principal 
components (PCs) were determined by using a leave-one-
out cross validation procedure.

For PCA analysis of DSC data, a data matrix was 
constructed so each row corresponds to a sample. The 
matrix contains 42 samples (9 samples of pure coffee and 
33 of binary mixtures) and 20749 variables (corresponding 
to heat flow (uW mg-1) from 50 to 600 °C). The first 
9 samples were of pure coffee at three levels of roaster. A 
classifying test sample was performed using Mahalanobis 
distance classification with Ward’s method. To estimate 
the percentage of corn in samples, a PLS model was built 
using 22 samples for calibration and 11 for validation. The 
number of latent variables was chosen by cross-validation 
with leave-one-out method.

The data pre-treatment techniques employed to FTIR 
spectra were first derivative (Savitzky-Golay, window 
length: 15, polynomial order: 2), SNV and mean center. For 
PCA analysis of FTIR data, data matrices were constructed 
so each row correspond to a sample and each column 
represents the spectra in a given wavenumber. The matrix 
contains 108 samples (9 of pure coffee and 99 of binary 
mixtures) and 7209 variables (corresponding to FTIR 
spectra from 525 to 4000 cm-1). The cluster analysis using 
Mahalanobis distance classification with Ward’s method 

was conducted to classify the samples. The PLS model was 
built using 66 samples for calibration and 33 for validation 
with 7209 variables (corresponding to absorbance spectrum 
of FTIR from 525 to 4000 cm-1).

Results and Discussion

Thermal analysis

Roasted and ground pure coffee, pure corn and mixtures 
of coffee and corn were analyzed by DSC and their curves 
can be seen in Figure 1. There are few differences between 
the DSC curves of three levels of roasting (Figure 1a), 
therefore it is expected that the level of roasting was not 
interfered in identifying adulteration of coffee with corn. 
However, there are visual differences in the DSC curves 
of coffee and corn (Figure 1b), which are important for the 
identification of this kind of adulteration.

In Figure 1b is possible to observe an endothermic peak 
at the region between 65 and 80 °C (C1) present in DSC 

Figure 1. DSC curves of (a) three levels of roast (light, medium and dark 
roast) of pure coffee samples (averages of n = 3); (b) pure coffee, pure 
corn and a mixture of coffee and corn 60:40% (m/m) and (c) TG curve 
pure coffee, pure corn and a mixture of coffee and corn 60:40% (m/m).
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curves of pure coffee at three levels of roast. At TG curve 
(Figure 1c) there is a slightly mass loss of 1-2% in this 
region. The temperature and the low percentage of mass 
loss suggest that it may be related to dehydration process.

The endothermic peak between 175 to 250 °C present in 
DSC curves at Figure 1b (C2, A1 and M1) is from melting 
of some constituents like amino acids, lipids and sugars 
such as sucrose, glucose, fructose, arabinose, galactose, 
maltose and polysaccharides present in all samples (coffee, 
corn and mixture).45,46

In temperatures above 250 °C in DSC curves at 
Figure 1b there are exothermic peaks at DSC curves (C3, 
A2, M2 and M3), and mass loss of approximately 80%, that 
usually involves breaking bonds and the release of some 
volatiles compounds. The peak A2, in DSC curve of corn, 
may be from degradation of corn starch.47

Scores and loading PCA matrices were generated using 
4 principal components (PCs), describing at total 63.00% of 
variance. In the scores plot for the first three PCs (Figure 2a) 
is possible to observe that the first principal component 
(PC1) is able to differentiate the pure samples (sample 1 to 
9) from adulterated (sample 10 to 42) samples, and that there 
is a trend of the level of adulteration. There is a trend of as 
higher the level of adulteration, more distant the samples 
are from the region of the pure samples, and as lower the 
level of adulteration, closer the samples are from the region 
of the pure samples. In Figure 2a is possible to see that the 
third principal component (PC3) is able to differentiate the 
level of roaster. Light roast (sample 10 to 20) at top region of 
the plot, medium roast (sample 21 to 31) at mid region and 
dark roast (sample 32 to 42) at lower region. The clustering 
analysis was performed and the dendrogram of DSC data 
obtained using Ward’s method and Mahalanobis distance 
(Figure 2b) shows the separation between the groups of pure 
coffee samples and the samples of binary mixtures.

The calibration data set of PLS model using DSC 
curves was composed by 23 samples, and validation data 
set, 10 samples, in three roast level (low, medium or high). 
The model was built with 4 latent variables (LVs). The 
correlation between the values of estimated and reference 
concentrations values is presented in Figure 3, where a good 
agreement can be observed. The performance parameters 
of PLS model are displayed in Table 2.

Infrared spectroscopy analysis

Roasted and ground coffee and corn were analyzed by 
ATR-FTIR and their infrared spectra can be seen at Figure 4a. 
There are no visual differences between the spectra of three 
levels of roasting, therefore it is expected that the level of 
roasting will not interfere at identifying adulteration of coffee 

Figure 2. (a) Principal component analysis (PCA) scores plot of PC1 
versus PC2 versus PC3 of DSC data. Samples 1-3: () pure light roast 
coffee; 4-6: () pure medium roast coffee; 7-9: () pure dark roast coffee; 
10-20: () mixtures of light roast coffee and corn; 21-31: () mixtures 
of medium roast coffee and corn; and 32-42: () mixtures of dark roast 
coffee and corn; (b) dendrogram from cluster analysis of Mahalanobis 
distance using Ward’s method for 9 samples of pure coffee (red) and 
33 samples of adulterated coffee (green).

Table 2. Performance parameters of PLS model to estimate corn 
concentration on roasted and ground coffee by DSC and ATR-FTIR

Parameter DSC ATR-FTIR

Latent variables 4 6

RMSEC 1.15 1.25

RMSECV 3.45 2.63

RMSEP 3.94 1.53

R2 calibration 0.9927 0.9915

R2 cross-validation 0.9351 0.9623

R2 prediction 0.9152 0.9876

RMSEC: root mean square error of calibration; RMSECV: root mean 
square error of cross-validation; RMSEP: root mean square error of 
prediction (% m/m).

Figure 3. PLS regression and external validation for the corn content in 
roasted and ground coffee of DSC data. Circle: calibration set; triangle: 
validation set; and error bars: uncertainty of the estimates values with 
95% of confidence.

Figure 2. (a) Principal component analysis (PCA) scores plot of PC1 
versus PC2 versus PC3 of DSC data. Samples 1-3: () pure light roast 
coffee; 4-6: () pure medium roast coffee; 7-9: () pure dark roast coffee; 
10-20: () mixtures of light roast coffee and corn; 21-31: () mixtures 
of medium roast coffee and corn; and 32-42: () mixtures of dark roast 
coffee and corn; (b) dendrogram from cluster analysis of Mahalanobis 
distance using Ward’s method for 9 samples of pure coffee (red) and 
33 samples of adulterated coffee (green).
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by corn. However, there are differences between the infrared 
spectra of roast coffee and roast corn, which are important for 
the identification and quantification of adulteration by corn.

The visual analysis of ATR-FTIR spectra from samples 
of mixtures of coffee and corn (Figure 4b) does not allow 
to detect differences between them, so the PCA were 
performed in order to separate the samples of pure coffee 
and the adulterated coffee.

PCA analysis of ATR-FTIR spectra from pure coffee 
and adulterated samples present 6 PCs describing at total 
75.61% of variance. Figure 5 shows the scores of first three 
PCs. When the concentration of adulterant is low, the PCA 
analysis with FTIR is not able to distinguish adulterated 
coffee from pure one with 95% of confidence. As observed 
with the PCA from DSC data, there is a trend of as higher 
the level of adulteration, more distant the samples are from 
the region of the pure samples, and as lower the level of 
adulteration, closer the samples are from the region of the 
pure samples. The PCA model with FTIR was not able to 
differentiate from different levels of roast. The clustering 
analysis was conducted and the dendrogram of DSC data 
obtained using Ward’s method and Mahalanobis distance 
(Figure 5b) shows the low separation of groups of pure 
coffee samples and adulterated samples.

To build PLS model the samples of pure roasted and 
ground coffee were excluded from the calibration and 
validation due to the presence of a large error in the prediction 
values when compared with the reference values, so the total 

number of samples is 99, being 66 on calibration set and 33 
on validation set. The model was built with 6 latent variables 
(LVs). The correlation between the estimated values and 
reference concentrations values is presented in Figure 6, 
where a good agreement can be observed. The performance 
parameters of PLS model are displayed in Table 2. 
Comparing the performance parameters values of DSC and 
FTIR models, both methods are satisfactory to quantify 
corn adulteration in samples of roasted and ground coffee.

Conclusions

DSC and ATR-FTIR coupled with chemometric 
analysis (PCA and PLS) were performed. Both DSC and 

Figure 5. (a) PCA plot of PC1 versus PC2 versus PC3 of ATR-FTIR data. 
Samples 1-3: () pure light roast coffee; 4-6: () pure medium roast 
coffee; 7-9: () pure dark roast coffee; 10-42: mixtures of light roast 
coffee and corn; 43-75: mixtures of medium roast coffee and corn; and 76-
108: mixtures of dark roast coffee and corn; (b) dendrogram from cluster 
analysis of Mahalanobis distance using Ward’s method for 9 samples of 
pure coffee (red) and 99 samples of adulterated coffee (green).

Figure 4. (a) Average (n = 3) ATR-FTIR spectra of three levels of roast 
(light, medium and dark roast) of pure coffee samples, pure roast corn 
and a mixture of coffee and corn 60:40% (m/m); (b) ATR-FTIR spectra 
of mixtures of roasted coffee and corn.

Figure 6. PLS regression and external validation for the corn content 
in roasted and ground coffee of ATR-FTIR data. Circle: calibration set; 
triangle: validation set; and error bars: uncertainty of the estimates values 
with 95% of confidence.
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FTIR coupled with PCA were able to detect adulteration 
with corn even in concentrations lower than 1%. The 
methodologies are able to meet the Brazilian current 
law (Instrução Normatica No. 16, from May 24, 2010 of 
MAPA), that regulates a maximum level of 1% (m/m) of 
adulterants. PLS models were built with DSC and FTIR 
data, and both techniques of analysis have showed good 
agreement between the values of estimated and reference 
concentrations, with RMSE lower than 3.4% for DSC data 
and 2.1% for FTIR data.

Thermal analysis, like DSC, is more applied to 
characterization than to quantification analysis. The results 
showed that the developed models by DSC analysis are 
good alternatives to be used in detection of frauds and in 
quality control of coffee.

It is common to find in literature the use of infrared 
spectroscopy with PLS to quantification of some adulterants 
in coffee, but some authors says that DRIFTS provides 
spectra with higher intensity of absorption than ATR-FTIR, 
and therefore FTIR could not provide a complete 
discrimination between adulterated and non-adulterated 
coffees.7,15 In this work it is possible to see the potentiality 
of ATR-FTIR to detect and quantify the adulteration of 
coffee due to corn presence, even at low concentrations 
(less than 1% (m/m)).

DSC and FTIR are complementary techniques that can 
offer a reproducible fingerprint for adulteration detection 
and quantification purposes.
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