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Abstract

Microsatellite markers, also known as SSRs (Simple Sequence Repeats), have proved to be excellent tools for iden-
tifying variety and determining genetic relationships. A set of 127 SSR markers was used to analyze genetic similarity
in twenty five Coffea arabica varieties. These were composed of nineteen commercially important Brazilians and six
interspecific hybrids of Coffea arabica, Coffea canephora and Coffea liberica. The set used comprised 52 newly de-
veloped SSR markers derived from microsatellite enriched libraries, 56 designed on the basis of coffee SSR se-
quences available from public databases, 6 already published, and 13 universal chloroplast microsatellite markers.
Only 22 were polymorphic, these detecting 2-7 alleles per marker, an average of 2.5. Based on the banding patterns
generated by polymorphic SSR loci, the set of twenty-five coffee varieties were clustered into two main groups, one
composed of only Brazilian varieties, and the other of interspecific hybrids, with a few Brazilians. Color mutants could
not be separated. Clustering was in accordance with material genealogy thereby revealing high similarity.
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Introduction

Coffee is an important crop in several countries. Of
all the species, Coffea arabica L. is the most widely grown,
due both to the low caffeine content and the smooth final
beverage. This species accounts for almost the entire pro-
duction of Latin American countries (Orozco-Castillo et

al., 1994).
Traditionally, morphological and biochemical char-

acteristics have been used to characterize varieties. Al-
though these markers are still important, they are somewhat
limited, through the need for physical space for evaluation,
the effect of environmental conditions on character expres-
sion, and the time required for making a full description, as
several characters need to be evaluated during the entire
growth period of the plant. For coffee trees, the latter limi-
tation is extremely relevant, through being a perennial crop
requiring three-years-growth until full maturity (Mendes
and Guimarães, 1998). It takes at least fifteen years to ob-
tain a new variety.

In 2001, C. arabica was included on the Brazilian roll
of species from which varieties can be protected, without,
however, indicating stable and homogeneous markers re-

quired for the effective enforcement of protective mea-
sures. In the past, DNA-based markers have been used for
studying genetic diversity in many plant species. This type
of marker, besides facilitating the analysis of variation
present in DNA itself, can also be used for variety identifi-
cation. In addition, they are environmentally independent,
and may be detected in any type of tissue and developmen-
tal phase of the plant (Arens et al., 1995; Ferreira and
Grattapaglia, 1998). Analysis of C. arabica varieties in
Brazil has revealed that the material employed is derived
from few ancestral varieties (Typica, Bourbon and Suma-
tra), which themselves have undergone mutual spontane-
ous mutations and crossings (Mendes and Guimarães,
1998).

Nuclear DNA variation in coffee has been evaluated
by using molecular markers such as RFLP (Lashermes et

al., 1999), RAPD (Diniz et al., 2005; Anthony et al., 2002,
Silveira et al., 2003), AFLP (Steiger et al., 2002; Anthony
et al., 2002) and SSRs (Combes et al., 2000; Anthony et al.,
2002; Moncada and McCouth 2004; Maluf et al., 2005;
Poncet et al., 2006; Aggarwal et al., 2007; Silvestrini et al.,
2007), whereby it has been shown that genetic variation in
the genus Coffea is low, especially among cultivated C.

arabica tetraploid varieties. Chloroplast DNA (cpDNA)
non-coding regions have been used as a source of molecu-
lar markers in studies concerning the relationships within
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and among species of this genus (Orozco-Castillo et al.,
1996; Cros et al., 1998), where only interspecific polymor-
phism was detected.

Simple sequence repeats (SSR), or microsatellite
markers, are very attractive for studies in plant genetics,
through their usefulness in evaluating those varieties with a
narrow genetic base (Bredemeijer et al., 2002). Further-
more, they can be efficiently analyzed by rapid and simple
polymerase chain reactions, besides being co-dominant,
highly reproducible and multi-allelic, and capable of being
automated (Ferreira and Grattapaglia, 1998).

By using markers developed for C. arabica, Moncada
and McCouth (2004) showed the particular value of SSR
markers for discriminating closely related commercial vari-
eties of coffee. Maluf et al. (2005) and Silvestrini et al.

(2007) confirmed the low genetic diversity in coffee,
mainly in tetraploid varieties, although none were related to
the varieties under study.

The number of microsatellite markers currently avail-
able for coffee remains limited. To date, only 224 genomic
SSR markers for species of the Coffea genus have been de-

scribed (Hendre et al., 2008). Coffea arabica is the most
important, and there is an urgent need for additional micro-
satellite makers for facilitating the identification of closely
related varieties. Thus, the aim was to develop and charac-
terize additional microsatellite markers for C. arabica, and
evaluate their use in identifying varieties of commercial in-
terest in Brazil.

Material and Methods

Plant material and DNA isolation

A set of 19 Coffea arabica varieties was selected,
these representing all the major varieties grown in Brazil
(Table 1). The DNA of each genotype was extracted from
ground seeds. Six interspecific hybrids of C. arabica, C.

liberica and C. canephora from the Centro de Investigação
das Ferrugens do Cafeeiro (CIFC) were included in this
work. The DNA of this material was extracted from
freeze-dried leaves. For the construction of genomic librar-
ies enriched for microsatellites, DNA was extracted from
leaves of variety Catuaí Vermelho IAC-44 (C.arabica). In
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Table 1 - Genealogy of the studied coffee varieties.

Number Origin Name Background

1 Brazil Acaiá Cerrado MG1474 Selection from Mundo Novo

2 Brazil Mundo Novo IAC 376-4 Sumatra X Bourbon Vermelho

3 Brazil Obatã IAC1669-20 Selection from Sarchimor1

4 Brazil Oeiras MG 6851 Selection from Caturra Vermelho X Hibrido do Timor

5 Brazil Ouro Verde IAC H5010-5 Selection from Catuaí Amarelo and Mundo Novo

6 Brazil Rubi MG1192 BC Catuaí Vermelho X Mundo Novo

7 Brazil Topázio MG1190 BC Catuaí Amarelo X Mundo Novo

8 Brazil Bourbon Amarelo IAC J22 Típica

9 Brazil Bourbon Vermelho IAC 662 Típica

10 Brazil Catuaí Amarelo IAC 62 Selection Mundo Novo X Caturra Amarelo

11 Brazil Catuaí Vermelho IAC 99 Mundo Novo X Caturra Amarelo

12 Brazil Catucaí Amarelo 2015/ cova 479 Icatu Amarelo X Catuaí Vermelho

13 Brazil Catucaí Vermelho 2015/cova 476 Icatu Vermelho X Catuaí Amarelo

14 Brazil Caturra Amarelo IAC 476 Mutant of Bourbon Vermelho

15 Brazil Caturra Vermelho IAC 477 Mutant of Bourbon Vermelho

16 Brazil IAPAR 59 Selection from Sarchimora

17 Brazil Tupi IAC 1669-33 Selection from Sarchimora

18 Brazil Icatu Amarelo IAC 2944 Bourbon Amarelo X Icatu Vermelho

19 Brazil Icatu Vermelho IAC 2945 Bourbon Vermelho X C. canephora

20 Portugal CIFC H147/1 C. arabica X C. liberica

21 Portugal CIFC 34/13 (S353-4/5) C. arabica X C. liberica

22 Portugal CIFC 832/1 Híbrido do Timor (C. arabica X C. canephora)

23 Portugal CIFC 1343/269 Híbrido do Timor clone (C. arabica X C. canephora)

24 Portugal CIFC 110/5 C. arabica X C. Arabica

25 Portugal CIFC H539/8 C. arabica X C. Canephora

1Sarchimor = Villa Sarchi X Híbrido do Timor (= C. arabica X C. canephora).



all cases the DNA extraction was carried out using the
DNeasy Plant Mini Kit (Qiagen), according to manufac-
turer’s instructions.

SSR sequences from public databases and primer
design

Coffee microsatellite sequences were extracted from
the NCBI database. Those containing di-nucleotide (n > 10)
or tri-nucleotide (n > 6) repeats were selected for primer de-
sign. PCR primers flanking the repeat sequence were de-
signed using the primer select module of the DNAstar
Lasergene package. Six SSRs for C. arabica described by
Combes et al. (2000) and 13 cpDNA SSRs (Taberlet et al.,
1991; Orozco-Castillo et al., 1996) were also tested.

Microsatellite isolation

Additional microsatellites were isolated from en-
riched small-insert genomic libraries constructed according
to Van de Wiel et al. (1999), with a minor modification.
DNA of the Catuaí Vermelho IAC-44 variety was digested
with AluI, RsaI, MboI or TaqI enzymes instead of being
sonicated. After digestion, the DNA fragments were hy-
bridized to filters containing the following synthetic oligo-
nucleotides: (TCT)10, (TGT)9, (GAG)8, (GTG)8, (TGA)9,
(AGT)10, (CGT)8, (GCT) 8, (CT)12 and (GT)12. Filters, on
being washed with 0.5xSSC 1% SDS (low stringency
wash) and 0.2xSSC 1% SDS (high stringency wash), gave
rise to two genomic libraries.

Nomenclature

The newly developed markers were named according
to the nomenclature proposed by Hendre et al. (2008) for C.

canephora SSR markers. Each marker was identified by the
suffix CarM, indicating C. arabica microsatellite marker,
followed by a number.

Microsatellite analysis

Microsatellites were amplified by PCR in a 20 �L re-
action volume, containing 10 mM of Tris-HCl pH 9.0,
20 mM of (NH4)2SO4, 0.01% Tween 20, 1.5 mM MgCl2,
0.1 mM of each dNTP, 4 pmol of each primer, 0.2 units of
Goldstar Taq DNA polymerase (Eurogentec, Maastricht,
The Netherlands), and 16 ng of genomic DNA. The ampli-
fications were performed in a PTC-200 MJ Research Ther-
mal Cycler, programmed for one step at 94 °C for 3 min,
followed by 30 cycles (30 s at 94 °C, 30 s at the annealing
temperature determined for each primer pair, and 45 s at
72 °C), and a final extension at 72 °C for 3 min. All primers
were synthesized by Eurogentec (Maastricht, The Nether-
lands) (Table S1).

The PCR products were separated on 6% polyacryl-
amide gels, by using a Sequi-Gen Sequencing Cell (Bio-
Rad) apparatus at 110W for 1-3 h in 1x TBE buffer. After
electrophoresis, the products were visualized through silver
staining as described by Van de Wiel et al. (1999), and the

patterns analyzed for the presence of polymorphism and the
quality of the banding pattern, according to Arens et al.

(1995).

Data analysis

For polymorphic microsatellite loci, the number of al-
leles per locus and allelic phenotypes were counted. Con-
sidering that C. arabica is a tetraploid species, assessing the
actual genotype itself based on band intensity is unreliable.
Therefore, banding patterns were observed for each poly-
morphic locus and recorded as allelic phenotypes (Becher
et al., 2000). In order to quantify the discrimination power
of the microsatellite markers, the number of effective al-
leles (ne) for each marker was calculated according to the
formula (Hartl and Clark, 1997): ne = 1/� (E/F)2, where E is
the total number of genotypes with each allele of locus i,
and F is the total number of alleles of the locus i in all geno-
types.

A presence/absence (1/0) allele matrix was built, and
Jaccard similarity was calculated by using the NTSYS (ver-
sion 2.1) computer program. UPGMA dendrogram was
calculated using the SHAN algorithm of the NTSYS pack-
age. Bootstrapping was applied to evaluate the degree of
association between the genetic similarity matrix and den-
drogram, using the BOOD software version 3.0 (Coelho,
2001). Pearson correlationship was calculated using the
GENES software Windows version (Cruz, 2001) to indi-
cate the extent to which the clustering of genotypes demon-
strated in the dendogram accurately represents the esti-
mates of genetic similarity.

Results

Microsatellite enrichment from C. arabica

An overview of the results obtained with micro-
satellite enrichment procedures is given in Table 2. An arbi-
trary number of positive clones were sequenced. Of the 135
recombinant clones obtained from the first enrichment (low
stringency library), 110 were sequenced, with 41% (45)
containing a microsatellite sequence, 2 of which redundant.
Twenty microsatellite sequences had perfect repeats,
22 had imperfect repeats and three were compound repeats.
Flanking regions in eighteen inserts were large enough for
primer design. From the 397 recombinant clones character-
ized in the second enrichment (high stringency library), 192
were sequenced, with 46% (89) containing microsatellite
sequences, 14 of which redundant. For this set, 51 micro-
satellite sequences were perfect repeats and 29 imperfect
and nine were compound repeats. Flanking regions in 35 in-
serts were suitable for primer design.

In total, 53 primer pairs could be developed, 23 for
di-, 24 for tri-, 3 for tetra-, 2 for penta- and 1 for com-
pound-nucleotide repeats. The latter two were found only
in the first enriched library. The sequences of all markers
obtained are shown in Table S1. Compound microsatellite
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sequences consisting of CCA/TCA and TGA/GAA repeats
were found in both libraries, whereas clones containing
microsatellite sequences which were not specifically
searched for, as GGA, were found in the first. GT and TGA
were the most common di- and tri-nucleotide motifs en-
countered (results not shown). All 53 primer pairs produced
a clear PCR fragment.

Markers from public database sequences and
literature

The screening of a public (NCBI) database for
microsatellite sequences resulted in 56 accessions which
met the set criteria (more than 6 repeat units per tri-
nucleotide repeat and 10 repeat units per di-nucleotide).
Some of these sequences had already been used for marker
development. Nevertheless, as primer design was under-
taken independently, there are differences in the primers
used to amplify SSR markers in our study and theirs
(Coulibaly et al., 2003; Poncet et al., 2006). An additional
6 primer pairs were available from literature (Combes et

al., 2000). These sequences are also incorporated in Table
S1. Beside the nuclear DNA markers, 13 cpDNA primers
were tested (Taberlet et al., 1991; Orozco-Castillo et al.,
1996).

Marker characterization and allelic variation

A total of 127 primer pairs were tested for pattern
quality and degree of polymorphism using a set of 19 cof-
fee-varieties and 6 inter-specific hybrids. 125 primers am-
plified the expected DNA fragments, although only 22
were polymorphic. Most markers contained a GT repeat.
All polymorphic markers gave a pattern quality of 1 or 2

(Arens et al., 1995) and could be scored unambiguously.
An example of the molecular pattern obtained with the
CarM092 marker is shown in Figure 1. A total of 55 alleles
were detected using the 22 polymorphic SSR loci, the num-
ber of alleles per locus ranging from 1 to 7, an average of
2.5 alleles per locus (Table 3).

Variety identification

The 22 polymorphic SSR markers were used to
group the set of varieties and inter-specific hybrids. The
UPGMA dendrogram revealed that most of the Brazilian
varieties were placed in a group with high bootstrap value
(81.7%), thereby indicating reliable clustering (Figure 2).
The interspecific hybrids and two Brazilian varieties
(Tupi and Icatu Vermelho) were placed in groups with
bootstrap values below 50%. Pearson correlation was
0.958, thus indicating that the observed clustering of vari-
eties in the dendrogram accurately represented the esti-
mates of genetic similarity.

The allelic profiles of all the varieties used in this
study can be seen in Table S2. As regards Brazilian mate-
rial, variety-specific alleles were detected with the markers
CarM101, CarM051 and CarM052 for the varieties Bour-
bon Vermelho, Icatu Amarelo and Vermelho.

The loci CarM068, CarM086, CarM002, ccmp3,
ccmp10 and NTCP8 amplified only in interspecific hy-
brids.

The CarM051 locus was the most discriminating,
with six allelic phenotypes and 3.4 effective alleles (Ta-
ble 3). Although for CarM092 the effective alleles count
was low, with only four allelic phenotypes, it was, together
with CarM101, CarM051 and CarM052, one of the more
discriminating markers for Brazilian varieties.
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Table 2 - Results from microsatellite cloning and sequencing of two enriched libraries (EL) of C. arabica. Two elution conditions were used:
1) low-stringency (0.5xSSC) and 2) high-stringency (0.2xSSC). Positive clone indicates the number of clones hybridizing to a labeled oligo probe mix-
ture. SSR indicates the number of clones containing a microsatellite. Designed primers indicate the number of clones on the basis of which primers could
be designed for amplification of the microsatellite.

EL Screened clones Positive clones Sequenced clones SSR Primers designed Polymorphic markers

1 3572 135 110 45 18 2

2 3840 397 192 89 35 5

Figure 1 - Molecular pattern obtained with the marker CarM092 (1: Acaiá Cerrado MG1474; 2:Mundo Novo IAC 376-4; 3:Obatã IAC 1669-20; 4: Oeiras
MG6851; 5: Ouro Verde IAC H5010-5; 6: Rubi MG1192; 7: Topázio MG1190; 8: Bourbon Amarelo IAC J22; 9: Bourbon Vermelho IAC 662; 10: Catuaí
Amarelo IAC 62; 11: Catuaí Vermelho IAC 99; 12:Catucaí Amarelo 2015/cova479; 13: Catucaí Vermelho 2015/cova476; 14: Caturra Amarelo IAC 476;
15: Caturra Vermelho IAC 477; 16: IAPAR 59; 17: Tupi IAC 1669-33; 18: Icatu Amarelo IAC2944; 19: Icatu Vermelho IAC 2945; 20: CIFC H147/1; 21:
CIFC 34/13(S353-4/5); 22: CIFC 832/1; 23: CIFC1343/269; 24: CIFC 110/5; 25: CIFC H539/8.



Discussion

Enriched libraries

Enrichment based on the hybridization of genomic
DNA fragments to filters containing synthetic oligonu-
cleotide repeats, has been shown to be an efficient way of
microsatellite retrieval in several species like tomato, let-
tuce, roses and C. canephora (Vosman and Arens, 1997;
Van de Wiel et al., 1999; Esselink et al., 2003; Hendre et

al., 2008). Results presented in this paper indicated efficacy
also for C. arabica.

In terms of efficiency, the second library (high strin-
gency filter washing) generated a higher frequency of clo-
nes containing microsatellites, which, besides being longer,
consisted of a higher percentage of perfect repeats. Most of
the di-nucleotide microsatellite repeats were of the GT mo-

tif, which is in agreement with previous microsatellite re-
trieval efforts in coffee (Vascotto et al., 1999), and with the
C. arabica microsatellite sequences present in the NCBI
database. In contrast, Ruas et al. (2003) showed that the
GA-nucleotide motif, combined with other di, tri and tetra-
nucleotide motifs, produced a high number of DNA frag-
ments, thereby inferring a high frequency of poly GA
microsatellite motifs in the coffee genome. It is well known
that di-nucleotide repeats are very common in plants (Mor-
gante and Olivieri, 1993). In C. canephora, the most com-
mon was di-nucleotide repeats (AT and AG) (Hendre et al.,
2008), which is in agreement with our results. The TGA
motif was the most common among the tri-nucleotides,
whereas in C. canephora, this was AGC (Hendre et al.

2008). Clones containing the TGA motif were also found
by Vascotto et al. (1999) in coffee and other species, such
as tomatoes and roses (Esselink et al., 2003; He et al.,
2003). In Arabidopsis thaliana (Depeiges et al., 1995), sug-
arcane (Cordeiro et al., 2000) and black poplar (Van der
Schoot et al., 2000), the frequency of this motif was lower.
In general SSR markers developed for Coffea sp. are
mainly comprised of di and tri-nucleotide repeats (Poncet
et al., 2006; Aggarwal et al., 2007).

Allele variation

In the set of coffee varieties and interspecific hybrids,
only 22 (17%) out of the 127 markers tested were polymor-
phic, thereby clearly revealing the narrow genetic base of
coffee. There was little diversity among the material tested,
especially among the Brazilian varieties. The number of al-
leles per locus ranged from 1 to 7, which is in agreement
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Figure 2 - UPGMA dendrogram obtained using the Jaccard similarity of
19 coffee varieties and 6 interspecific hybrids, with data from 22 polymor-
phic microsatellite loci (Bootstrap values are in percentages).

Table 3 - Number of alleles per locus, number of effective alleles (ne) and
number of allelic phenotypes from the 22 polymorphic microsatellite
markers.

SSR marker N. of alleles per
locus

N. of effective
alleles (ne)

N. of allelic
phenotype

M201 3 1.3 4

M24 4 1.9 5

CarM0652 1 1 1

CarM070 1 1 1

CarM069 2 1.1 2

CarM068 1 1 1

CarM0863 1 1 1

CarM092 3 1.9 4

CarM096 3 1.8 2

CarM101 7 3.9 4

CarM105 2 1.4 3

CarM0014 1 1 1

CarM002 1 1 1

CarM0485 5 1.8 6

CarM049 2 1.2 3

CarM050 2 1.5 2

CarM051 5 3.4 6

CarM052 7 1.8 7

Ccmp36 1 1 1

Ccmp6 2 1.2 2

Ccmp10 1 1 1

NTCP8 1 1 1

Total number of alleles 55

Average alleles/locus 2.5

1Primer sequences published by Combes et al. (2000), 2Primers developed
from clone sequences published by Rovelli et al. (2000) in the NCBI data-
base; 3Primers developed from clone sequences published in the NCBI da-
tabase; 4Primers obtained in the first genomic library; 5Primers obtained in
the second genomic library; 6Chloroplast markers.



with previous studies (Vascotto et al., 1999; Anthony et al.,
2002; Moncada and McCouth 2004; Aggarwal et al., 2007;
Hendre et al., 2008).

Moncada and McCouch (2004) used a set of 34 SSR
markers to distinguish closely related commercial varieties
of C. arabica, thereby confirming the need for working
with SSR marker sets, in the case of crops with a narrow ge-
netic base.

On considering the low level of polymorphism de-
tected with isolated microsatellites, an attractive strategy
could be to first try selecting SSRs with a high chance of be-
ing polymorphic. Recently, a software tool for identifying
such SSRs in EST sequences was developed (Tang et al.,
2008). With more than 55,000 ESTs in the database (NCBI,
December 2008), it was possible to identify several promis-
ing SSRs based on coding regions (Poncet et al., 2006;
Aggarwal et al., 2007).

Variety identification

As already mentioned, C. arabica varieties are highly
similar to each other. This high genetic similarity is possi-
bly a consequence of the self-pollinating nature of C.

arabica, as well as the breeding strategies used for coffee
(Lashermes et al., 1999; Combes et al., 2000; Anthony et

al., 2002; Steiger et al., 2002; Ruas et al., 2003; Moncada
and McConch 2004; Maluf et al., 2005).

The interspecific hybrids clustered far from most of
the Brazilian varieties probably because of the presence of
C. canephora and C. liberica in the genealogy of these ge-
notypes. This could be confirmed by using chloroplast
markers, which detect only inter-specific variation (Table
S2). The same was shown by Orozco-Castillo et al. (1996)
in a study of taxonomic relationships within the genus
Coffea, when using chloroplast DNA markers. Taberlet et

al. (1991) also demonstrated that the sequence of chloro-
plast DNA intergenic spacers can be used for phylogenetic
studies of closely related species. The removal of chloro-
plast data from the analysis did not alter the dendrogram
obtained in the present study, thereby showing that the clus-
tering obtained was really based on the presence of other
Coffea species. This is also the case for Brazilian coffee va-
riety clustering with interspecific genotypes. The Tupi vari-
ety is a hybrid between C. arabica and Híbrido do Timor.
Icatu Vermelho comes from a cross between C. canephora

and Bourbon Vermelho. Even though C. canephora is pres-
ent in the genealogies of Oeiras, Catucaí Amarelo, Catucaí
Vermelho and Obatã, these genotypes were grouped sepa-
rate from interspecific hybrids. This might be due to differ-
ences in the background of the material used, or to the size
of C. canephora introgressions in the varieties. The cluster-
ing of Brazilian varieties is in accordance with genealogical
data. The varieties Acaiá Cerrado and Mundo Novo
showed 100% similarity, which can be explained by Acaiá
Cerrado being a selection inside Mundo Novo. In spite of
the high genetic similarity among varieties, they are pheno-

typically different. In Acaiá Cerrado, tree-tops are cylindri-
cal and diameter reduced when compared to Mundo Novo.
Maluf et al. (2005) also found these two varieties to be
identical. Genetic similarity among Ouro Verde, Rubi and
Topázio is most probably due to the latter two having
Catuaí as a parent, whereas Ouro Verde is a selection from
Catuaí Amarelo. In Ouro Verde and Rubi, fruits are red and
in Topázio yellow, whereas the young leaves of Ouro
Verde are green and those of Rubi tanned.

The impossibility of separating color mutants, such as
Catucaí Amarelo and Vermelho and Catuaí Amarelo and
Vermelho, is to be expected, as mutants are usually the re-
sult of very few mutations that are difficult to spot with mo-
lecular markers (Weising et al., 1995; Vosman and Arens,
1997). No polymorphism caused by mutation was observed
with microsatellites in peaches (Testolin et al., 2000),
Pelagonium (Becher et al., 2000) and roses (Esselink et al.,
2003; Vosman et al., 2004). When a mutation occurs in any
of the genes involved in the synthesis of color components,
a color-mutant might be generated. In coffee, one gene in-
volved in fruit-color formation is known, and two alleles
(Xc and xc) have been identified (Mendes and Guimarães,
1998). Among the commercial arabica varieties, there are
other morphological differences, such as plant height, leaf
shape and size, leaf-color, branch-angle and stature. How-
ever, the differences among varieties at the DNA level are
limited, probably due to several commercial arabica variet-
ies originating either from single mutations or few ances-
tors.

According to the pairwise similarity matrix, genetic
similarity was at least 0.860 in Obatã, Caturra Amarelo and
Vermelho, Oeiras, Catuaí Amarelo and Vermelho and
Bourbon Vermelho. Many of these varieties are known mu-
tants or were obtained from selections or crosses between
these varieties, as is shown in Table 1. Similar results have
been recorded by many authors. Steiger et al. (2002) and
Maluf et al. (2005) also observed high genetic similarity
between Caturra and Catuaí. The Obatã variety is a selec-
tion from Sarchimor, itself originating from crossing Villa
Sarchi with Híbrido do Timor. High genetic similarity was
also observed between the varieties Villa Sarchi and Ca-
turra (Anthony et al., 2002). Thus Obatã was clustered with
the above mentioned varieties.

The distance between Bourbon Vermelho and Ama-
relo is probably due to the latter being a natural cross be-
tween Bourbon Vermelho and the variety Amarelo de Bo-
tucatu (Mendes and Guimarães, 1998; Maluf et al., 2005).
Anthony et al. (2002) noted that the M-24 primer was use-
ful for discriminating Bourbon from other varieties. In the
present work the same primer amplified an allele that also
facilitated the separation of Bourbon Amarelo from all
other Brazilian varieties.

Probably through being derived from Sarchimor with
C. canephora ancestry, IAPAR 59 remained clustered
close to interspecific hybrids. Likewise, the varieties Icatu
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Amarelo, Icatu Vermelho and Tupi, also with C.canephora

as a common ancestor, were clustered among interspecific
material.

Irrespective of the high genetic similarity, a certain
level of polymorphism is still to be found among C. arabica

varieties, whereby hybrids with better performances have
been obtained in Brazilian breeding programs. Heterosis
reached 25% in hybrids between the varieties IAPAR 59
and Mundo Novo (Diniz et al., 2005). This could be the re-
sult of the complementary action of simply a few genes.

The present fingerprint data generated for Brazilian
varieties could be used to construct a DNA reference data-
base for the molecular identification of varieties, as previ-
ously suggested (Bredemeijer et al., 2002; Aggarwal et al.,
2004; Hendre et al., 2008).
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Table S1 - SSR loci tested from genomic DNA.

SSR marker Accession number
(NCBI)

Repeat motif Primer sequence (5’- 3’) AT (°C) Allele size
(C. arabica L.)

CarM0011 - (GT)10 F: GTCATTTATTTTTCCGGTCATCCAT
R: AGCCCTCGTTCTGCCCACCAAAAGT

53 150-250

CarM002 - (CTT)8(TA)10 F: CGGGAGACGGTGATTTT
R: TATGGGTATTGTTTTGTTTTTA

53 150-250

CarM003 - (TCA)6 F: CTCGAAAGTGAAATACAGAACCAA
R: TGTAGAAGTCAAAATCAGGAACG

50 150-200

CarM004 - (GT)10 F: TAGAGGTTGCCGAGTGGATAGGTGT
R: AAACGGTAGGAGTGGAAGATTGAGC

50 150-260

CarM005 - (GT)10 F: GGGACCCACAAGTGCGAAAAGT
R: TCTAATGAGGGCTGGCTATGA

52 180-290

CarM006 - (GAAAA)3 F: GTTGCCGAGTGGATAGGTGTGAGAG
R: AAACGGTAGGAGTGGAAGATTGAGC

53 150-260

CarM007 - (GAAAA)3 F: CTCATAGCCAGCCCTCATT
R: TCCCAACTTACCTTAGAAACA

50 150-210

CarM008 - (ACTC)4 F: AGGAGCTTGAAGAATGTTGTGAC
R: AGGGGGTATGAGCGAGGGCGTTAGA

54 150-280

CarM009 - (GA)19 F: CGAGCTGCCAAAAACACAAG
R: AAGCAGCCGGGAAGAGGAGCAT

54 150-240

CarM010 - (GT)8 F: TTGGAAAATAAGCTTGGGAAACT
R: TAGCAAAATGGGCAGGAATAATAC

51 150-235

CarM011 - (GAA)5 F: TGCCCCATGAAGAGGAT
R: CAGATTGAGAGTGAGTGAACG

51 120-180

CarM012 - (GGA)5 F: GGAGGAGGAGGGGTTCTTTTCTATC
R: GAGCGTTGGGTGGTCTGGAGGTCAT

50 150-240

CarM013 - (TGAA)7 F: CTTGTAGGTTGGTGGAGGTT
R: TCAAATGCAAAAGAAAGCGATAA

53 150-200

CarM014 - (GAAA)4 F: TAGCGCTTATCCTCTTTCAATCAA
R: TCCCGAGTGCCTTCCCGTCTG

58 200-250

CarM015 - (CCT)6 F: TCGACTCGTCCTCCTCATCAGAAGA
R: GTTGGAGGAGCGGGGAGAGCAGT

58 180-345

CarM016 - (TGC)12 F: AACTCACCTGCCCGCTTATTACT
R: AGGAGGAGGGGAGGAGAGGAACTT

58 200-250

CarM017 - (CCT)9 F: CACCGCCAGCTCCATCATCTCC
R: GGTTGCATTTCCCCCAGTTCTTTTC

59 200-280

CarM018 - (GT)19 F: CCCCGATCCCTCTTTTGGTTA
R: GTGTGGGTAGTGGTGTGAGA

51 200-270

CarM0192 - (TC)19 F: ACTCAACAACACAAAAACGGAAGAT
R: TGTAACCCAATAAAAAGTGTGC

52 200-270

CarM020 - (TGA)8 F: GC1ACCCCTACCTCTCCTCCTATTAT
R: CGGCGGCGGTGGCATTGA

57 200-270

CarM021 - (TAC)9 F: GCGGCTTCTGCTGCTGCTC
R: TGGTTTGGGGTTTAAGGATTCACAT

53 100-140

CarM022 - (GAA)6 F: AAGAAAAATGTCCCCCAAAAGAAAT
R: TTGTGTCGAGTGATGCGTGTGAAA

50 100-135

CarM023 - (GA)10 F: CAAGCAGCTGCGGCAAGAATCA
R: AAAAGCTGCCAATATCAACGGTCAT

55 200-320

CarM024 - (CA)11 F: TGGTGCCAATGTTTCTCCTATCG
R: TCTTTAAAACTTGTTCCTCCTTCTG

52 200-290

CarM025 - (CAC)14 F: CACACGGATGACTGACTCTT
R: GTGTTGTGTTTCCTCGTATTATGAT

52 200-285

CarM026 - (GA)25 F: CCAGCAATCCTCCCTCCCACCAC
R: TACCGTATGCAGAGACAACAATG

55 260-365

CarM027 - (CA)26 F: ATCAAACCCACTCCTCAGC
R: GTCCCACTATACCTCTCCATTGT

51 200-270



SSR marker Accession number
(NCBI)

Repeat motif Primer sequence (5’- 3’) AT (°C) Allele size
(C. arabica L.)

CarM028 - (CAG)8 F: AGCAGCTGCAGCCACAACA
R: GAGTAAGAGCCCCAGAGCGTAACCT

56 200-290

CarM029 - (CA)10 F: ATTTTCCTTATCCACCAACAACCAT
R: TATTTCTCCCCCTTTCCCTCTATCC

54 100-175

CarM030 - (CTT)8 F: ATATAGCAACGGGTGTAGAAAATGT
R: CACCGATGATGAAGATGAGAAG

54 100-180

CarM031 - (TCA)25 F: CCCCGCCACCCCCAAGATT
R: CTGCAGAAGATGAGGATTTAT

53 250-330

CarM032 - (TGG)6 F: ATCCCTCCACGGCAACCCAAAATA
R: ATCCGCAGCCCTCACCATCCA

57 200-290

CarM033 - (CCA)14 F: AGCCAAACACGCCACTC
R: GGATGACCAACCAACAAATAC

53 200-265

CarM034 - (TGC)12 F: GATGTGGAGGAGGCTGCTGCTAA
R: TAGGGCGCCATCTGGTAGGGTTGT

60 200-270

CarM035 - (CAC)6 F: CCTGTATATTCTCCACCATCATCAT
R: TGGACATTTAAATAAGACAGAGTG

54 150-185

CarM036 - (GCA)6 F: GCAGCAACAACAGCAGACACAGAA
R: TGGGAGGTTTGAATTTTGAGTTGGT

55 150-190

CarM037 - (TCA)26 F: CACTTAACGCCGCAATGACAA
R: CAGAGATGATGGCAATAAACAGACA

53 150-210

CarM038 - (TGC)10 F: GCTGAAATTCCTGCTCCACCAACTC
R: AACCTTCACCCCCTCCAATCTTTCA

58 150-220

CarM039 - (TCC)7 F: CGTAGCGGTGGTGGTCGTTTGAT
R: AGTAGTGCACCATGATGAGGAGGAT

55 200-250

CarM040 - (TGC)17 F: ATTCTGAGCCAAGTTGCCCATTCCT
R: AAACCTTCACCCCTCCAACTTCAGA

58 200-260

CarM041 - (TAC)7 F: TCGGCGGTGATGGAAGTGG
R: TTGAGGGCTAAAGATGTCGTGAGTC

54 200-240

CarM042 - (GA)35 F: CCATTTCCTTCTCCATCTTGCTCTT
R: GATGGTGTCCCTTCTCCCTTGGTC

56 150-240

CarM043 - (TGC)10 F: CTGGTTGTGTTGAATATTTGTAGCA
R: AACCAGTAATTCAGCAGCAGTCTCA

56 150-215

CarM044 - (GT)18 F: TAACACTACTCTCGCCTTCTTCC
R: GCCGTAGCGCCCCCTCCATT

52 150-210

CarM045 - (CT)34 F: AAGCCCTTTCATTTATCCTCGTTAC
R: AGCTGCCCGTCCGTCTTTT

53 200-240

CarM046 - (CA)40 F: GTCCTCAGTCAATACCCAAAAGT
R: TGCCCAGCTCTCGCCAGGAC

55 200-250

CarM047 - (CT)23 F: CAACTGTCGCGCCCCACTTT
R: GGCCTTTCATCGTTTTCACTTTCAC

53 100-150

CarM048 - (GA)24 F: CCAGCAATCCTCCCTCCCACCAC
R: TACCGTATGCAGAGACAACAATG

56 280-310

CarM049 - (GA)24 F: ATGGCAAAGCAAAATGTGGGAAGAG
R: CACCTGAAGAAGATGACAAACTAAT

53 350-400

CarM050 - (TC)20 F: ATCCCTCCACGGCAACCCAAAATA
R: ATCCGCAGCCCTCACCATCCA

55 150-190

CarM051 - (CT)10 F: GATGTGGAGGAGGCTGCTGCTGAA
R: TAGGGCGCCATCTGGTAGGGTTGT

56 250-300

CarM052 - (TC)12 F: AGCAGCTGCAGCCACAACA
R: GAGTAAGAGCCCCAGAGCGTAACCT

54 250-290

CarM0533 AJ308745 (GT)12 F: CAAATCCATGTCGGTCACTTA
R: CAGGGCATCTATCTACTTCTCTTT

55 100-155

CarM054 AJ308746 (CT)13 F: AGGCCTTCATCTCAAAAACC
R: ACTGCCCCGTCAAGCCATTT

55 150-220

CarM055 AJ308754 (CA)12 F: TCGGGTACAAGGGGAGTGGATA
R: GCGGGCTACGGGGTTTGT

55 100-170



SSR marker Accession number
(NCBI)

Repeat motif Primer sequence (5’- 3’) AT (°C) Allele size
(C. arabica L.)

CarM056 AJ308781 (TG)17 F: TATCAAAACAACGTGGACATCA
R: GAGAGCAGCTTTTTAGAGGACAT

55 150-200

CarM057 AJ308774 (CAC)24 F: TTTTAAAACTGGGGAGATGGAATA
R: AGCGTGCGGGTGTCGGTGTAG

53 150-210

CarM058 AJ308793 (TG)38 F: CTGAGCGCATGGAAGGAGTAGC
R:GACGCAGGTGGTAGAAGAATGAAGA

55 150-190

CarM059 AJ308796 (TG)21 F: TTTTTCTGGGTTTTCTGTGT
R: GCATTCCCAGGGCTTCAAAA

55 100-140

CarM060 AJ308800 (TG)14 F: GTAGCGGCAGTGGGAATAATA
R: CCGTAGGAACCTCATAACTT

55 100-150

CarM061 AJ308874 (TG)12 F: GCTCACTTGGGCTGGATT
R: TATATTTTCGGTACAAGGGAGTG

55 100-130

CarM062 AJ308747 (CA)25 F: ATCTCCCCAACCTCATGTCTCTGT
R: GTGTGCTGGTAGGTGTTGTGT

55 160-220

CarM063 AJ308783 (TG)17 F: ACTTCGTATGGTTGTCTGT
R: AAATGATAGGAGGCACTTGA

55 120-150

CarM064 AJ308795 (CAT)7 F: TTGACCGGGGCAGAAGTTG
R: ATAGTGTCGGTTGTGTTGTTGAATC

55 150-200

CarM065 AJ308816 - F: ATTGCTTCTGTCATGCTTATTTG
R: TCCCTTAGACTGATTTTGTGAA

52 100-170

CarM066 AJ308825 (TG)18 F: TTGAGCAAAAACCCTATTCCT
R: TAAACCCAAAAAGACCACAAAAA

55 100-150

CarM067 AJ308843 (TG)25 F: GGGCCCGAACTCCAACCA
R: GGCCAAACCGTCGCATTATC

55 100-160

CarM068 AJ308854 (TC)24(TG)9 F: TACTTAAAGGCCCTGAATACAT
R: GAGACACCCACCCATCC

53 250-300

CarM069 AJ308856 (GA)7(GGGA)5(GT)8 F: GGCTGGTTTTCCTTTTCTG
R: ATTTGCTTATTATCCCACATTG

53 250-300

CarM070 AJ308860 (GA)6(GT)9 F: GTTCCATCCACCCTGTCAC
R: CTGGCTAGCTTCTTTCTGGTTT

53 200-250

CarM071 AJ308885 (CA)9 F: TCGGGTACAAGGGGAGTGGA
R: GCTTGGGCTGGATTTGTGCT

55 100-120

CarM072 AJ308882 (TG)9 F: CTGCGCTAGGTGTTCATCCA
R: AGTGCTCCTTCATCCCTTTTG

50 150-200

CarM073 4 AY102422 (CA)13 F: CCATTCCTACCCCTCTGTCCCTCTA
R: CCCCCAAAATCCCCCATCACC

50 300-390

CarM074 AY102423 (TG)14 F: AAGAGCAACCACATTTATTA
R: GCCCCTTTGTTTCCCATTCT

50 250-300

CarM075 AY102425 (AC)13 F: AAAAGCCACCACAGGAAGTT
R: TTAGAGAAGGGAGTGAAAGACATC

46 100-160

CarM076 AY102426 (TG)24 F: TCTATCCTCTATGACGAAACACTG
R: CCTAGGGGGCAAAAAGAT

50 100-150

CarM077 AY102427 (CA)11 F: TGCTTGTCAATATGCCTTTTTCT
R: CCGCAATGACTCCTAACCTAAC

46 130-150

CarM078 AY102428 (GA)30 F: AACCACCACAATTTTTCTTCTTTT
R: GATCTGCCATAGGTCTTACTTA

46 300-350

CarM079 AY102430 (GA)15 F: TGCCGGTTCCATTCTCCA
R: ATGACCAGCTCGCCAGTGAT

50 350-400

CarM080 AY102432 (GA)23 F: AACCTGCCGCCTCTTTC
R: TTGCGGGTAATAACTTCTCT

46 100-170

CarM081 AY102433 (TC)11 F: GGAGAAAAGTGGACACGAACAGG
R: CAACGAAAATTAGACACAAGCAACT

46 350-380

CarM082 AY102435 (CT)8 F: GTCCTGTTTTTGCCATGCCTTTAT
R: CACCCCTCTCCTGCTCAATCC

46 350-370

CarM083 AY102436 (TC)16 F: TAAATCGCGTGTGGGGTAT
R: TTGGGAGTTAAAAGAAGGTT

50 150-200



SSR marker Accession number
(NCBI)

Repeat motif Primer sequence (5’- 3’) AT (°C) Allele size
(C. arabica L.)

CarM084 AY102437 (GA)17 F: CCCAAAATGAGGAAATAGCA
R: GGTGGGCCAATAATGACAA

50 150-200

CarM085 AY102438 (AG)13 F: TAAGGGCTAGGAGGCAATAACC
R: ATAATCATCAACCAACCCATAAAAA

46 350-400

CarM086 AY102439 (GA)14 F: AGCCGATATCTGACTGTTCTTTTC
R: CTTGGCCCTTCCTTGGTTTTT

53 300-350

CarM087 AY102441 (GA)10 F: TTACATCCATCCGAAAACTT
R: CAGCACTGGCAAATAGCA

46 250-280

CarM088 AY102442 (GA)11 F: CGGAACGTGCATTTACCTAC
R: TGGCCTATCTATTACAGCATTTG

50 400-460

CarM089 AY102444 (TC)5 F: TACTGGGTTAAATTTATCGGGTGTT
R: AGGTTGGATGGTTAGTTTTGATGAT

46 250-300

CarM090 AY102445 (GA)1 F: ATACAGCAATTTTGAGAGGAG
R: TATTTTGGATTATGTTATGACG

46 250-280

CarM091 AY102446 (TC)19 F: TTGTGGGTATTGAAGTGAGC
R: CATCCCAAGCAAGAAGTGTA

46 300-355

CarM092 AY102447 (GA)13 F: AGGCCAGACTTGTTTGATTTTG
R: GGCCCTTCTCGCTTTAGTTG

53 200-300

CarM093 AY102448 (AG)23 F: CGCTAGCCAACGAGTGTAA
R: ATCCCAATTCTTTCTTTCTTTCTG

46 200-230

CarM094 AY102449 (GA)30 F: GCCCGATATTCACTTCCTCCTTTCA
R: GATCCGCAACCTCCATTCAGTG

50 400-440

CarM095 AY102452 (AG)18 F: GAAACCGTCAGTCCCAACA
R: CACTGAGGCACATGAATTTATCTAT

50 300-400

CarM096 AY102453 (TC)24 F: TACTGGGGAAGAATTTATCATC
R: TTAGGCCATCCAAGAGTATTC

50 280-320

CarM097 AY102454 (CT)18 F: GACTCAGCCGAATTCAAAGGTTAG
R:GAGGGGAAAAGAAAAGAATGAAGAA

46 500-525

CarM098 AY102456 (TC)14 F: TGGCTCTGCATTCTGTCATA
R:ACCCGGAACCCACCAAAATAA

46 200-260

CarM099 AY102457 (GA)24 F: AGAGCTGCGGTGGTGTCA
R: TATTAATACTCGCGGGGAAAAA

46 250-270

CarM100 AY102458 (TC)17 F: GCTTGTGTAGAAAATTTTGGTGTAG
R: CTTCATCGGCATCTTCATCATCA

50 500-540

CarM101 AY102459 (CT)28 F: TATGTCTCTAACTTTCCTATTTT
R: AGAGACTACATTTACACAGAAGA

50 170-210

CarM102 AY102460 (CT)23 F: ACGGGGTGGAGGTTGGTG
R:GGAGGGGAAAAGAAAATAATGAAGA

50 200-250

CarM103 AY102461 (CT)18 F: GCATTTTGGCCCTTCATTATTTTA
R: CATCCGCAACCTTCACCTG

50 500-580

CarM104 AY102462 (CT)17 F: AGTTCCCTTAGCTTTTTCTTTC
R: CTTGACTTGGGACTTGTTATTTTG

50 400-460

CarM105 AY102463 (GA)12 F: TGCTCCTACTAAATACCCAAACA
R: ATATGCCCAAGAAAATTAGATGAAA

53 230-270

CarM106 AY102464 (TC)13 F: GATCCGTCAGCTTTTCCACCAT
R: AATTCACCGATCTTTGTTG

46 200-240

CarM107 AY102465 (CT)11 F: TCTCGTCCGTATGAAACC
R: AGAGAAAAGGCTTGAAAACT

46 100-140

CarM108 AY102466 (CT)11 F: CACCGATCATGAGCGTAGG
R: ACAACCACCACCACCACCACAC

50 100-165

M20 5 - (GA)5(GT)8TT(GT)4TT
(GT)7(GA)11(TC)2(CT)3GT

F: CTTGTTTGAGTCTGTCGCTG
R: TTTCCCTCCCAATGTCTGTA

55 200-270

M24 - (CA)15(CG)4CA F: GGCTCGAGATATCTGTTTAG
R: TTTAATGGGCATAGGGTCC

55 150-180

M25 - (GT)5CT1(GT)14 F: CCCTCCCTGCCAGAAGAAGC
R: AACCACCGTCCTTTTCCTCG

57 160-170



SSR marker Accession number
(NCBI)

Repeat motif Primer sequence (5’- 3’) AT (°C) Allele size
(C. arabica L.)

M29 - (CTCACA)4(CA)9 F: GACCATTACATTTCACACAC
R: GCATTTTGTTGCACACTGTA

57 10-120

M32 - (CA)24 F: AACTCTCCATTCCCGCATTC
R: CTGGGTTTTCTGTGTTCTCG

57 90-135

M47 - (CT)9(CA)8(CT)4(CA)5 F: TGATGGACAGGAGTTGATGG
R: TGCCAATCTACCTACCCCTT

57 100-130

1,2Loci obtained with two enriched libraries; 3loci obtained from sequences published by Rovelli et al. (2000); 4loci obtained from published sequences in
NCBI; 5loci obtained from sequences published by Combes et al. (2000). AT: Annealing temperature in Celsius degree.



Table S2 - Allelic profiles of 19 coffee varieties and 6 interspecific hybrids obtained with 22 SSR polymorphic markers (1: Acaiá Cerrado MG1474;
2:Mundo Novo IAC 376-4; 3:Obatã IAC 1669-20; 4: Oeiras MG6851; 5: Ouro Verde IAC H5010-5; 6: Rubi MG1192; 7: Topázio MG1190; 8: Bourbon
Amarelo IAC J22; 9: Bourbon Vermelho IAC 662; 10: Catuaí Amarelo IAC 62; 11: Catuaí Vermelho IAC 99; 12: Catucaí Amarelo 2015/cova479; 13:
Catucaí Vermelho 2015/cova476; 14: Caturra Amarelo IAC 476; 15: Caturra Vermelho IAC 477; 16: IAPAR 59; 17: Tupi IAC 1669-33; 18: Icatu
Amarelo IAC2944; 19: Icatu Vermelho IAC 2945; 20: CIFC H147/1; 21: CIFC 34/13(S353-4/5); 22: CIFC 832/1; 23: CIFC1343/269; 24: CIFC 110/5;
25: CIFC H539/8). �: specific alleles of Brazilian cultivars.

SSR Locus Allele 1 2 3 15 4 10 11 14 5 6 7 8 9 12 13 16 17

CarM096 1 ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++

M20 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++

3 ++ ++ ++

CarM101 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

3 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

4 �

5 ++ ++ ++

6 ++ ++ ++

7 ++

CarM105 1 ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM092 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++

3 ++

M24 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++

3 ++ ++

4 ++ ++

CarM086 1 �

CarM001 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM002 1 ++ ++ ++

CarM049 1 ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM052 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++

3 �

4 ++ ++

5 ++ ++

6 ++

7 ++

CarM051 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

3 �

4 ++ ++ ++

5 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM050 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

2 ++ ++ ++ ++ ++

CarM065 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM070 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++



SSR Locus Allele 1 2 3 15 4 10 11 14 5 6 7 8 9 12 13 16 17

CarM069 1 ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

CarM068 1 ++

CarM048 1 ++ ++ ++ ++

2 ++ ++

3 ++

4 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

5 ++

cmp3 1 ++ ++

cmp6 1 ++ ++

2 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++

cmp10 1 ++ ++

NTCP8 1 ++


