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ABSTRACT  
This work presents the use of multiple techniques (i.e., physicochemical and spectral) applied to harvested coffee cherries for the postharvest 
classification of the maturity stage. The moisture content (MC), total soluble solids (TSS), bulk density, fruits’ hardness, CIEL*a*b parameters and 
the dielectric spectroscopy methods were applied on coffee cherries at seven maturity stages. These maturity stages were assessed according to 
the days after flowering (DAF) and the physical appearance as traditionally performed by growers. An increase of the green-to-red ratio (i.e., a*) 
parameter was perceived, accompanied by a monotonic response for the hardness, TSS and bulk density with a maximum moisture content at 
stage 5. In the case of the dielectric spectroscopy technique, the loss parameter presented higher losses for unripe stages at the ionic conduction 
region. To compare the individual performance of each of the techniques, three machine learning methods were used: random forest (RF), sup-
port vector machine (SVM) and k-nearest neighbours (k-NN). The meta-parameters for these techniques were optimized for each case to achieve 
the best performance possible. Furthermore, as the dielectric response is of spectral nature, recursive feature selection was applied and the 500 
MHz to 1.3 GHz frequency range selected for the task. The highest performance was obtained for the colorimetric (75.1%) and hardness (72.5%) 
responses, while the lowest was obtained for the moisture content (45.5%). The dielectric spectroscopy response presented a promising response 
(56.8%), that achieved a clear separation of unripe from ripe stages, except for stage 5 in which some of the samples were classified as stage 2. 
Most techniques studied are compatible with field conditions, and the dielectric technique shows potential to be transferred based on available 
software-radio defined platforms. 
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1 INTRODUCTION

The processing of coffee represents an important 
challenge to the industry as it considerably affects the 
quality and represents the highest costs to the producers 
(Arcila et al., 2007; Farah, 2012; Sunarharum; Williams; 
Smyth,  2014). Colombia has traditionally produced coffee 
by the wet method. In this method, once the cherries are 
hand-picked, they are pulped, fermented, and dried in the 
coffee farm or processing units. The dry parchment coffee 
beans are then hulled and roasted or exported. Most of these 
processing practices are performed by traditional artisan 
techniques.

One of the most essential stages is the hand-picking and 
sorting of the ripe coffee cherries. For instance, the Colombian 
coffee industry performs a selective and manual harvesting 
of ripe cherries to avoid affecting the sensory attributes of 
the beverage (Marín et al., 2004; Puerta-Quintero, 2000). 
As the maturity of the cherries if not achieved uniformly, 
several harvest sessions are required (Craig et al., 2015). The 
selection process is performed according to the appearance of 
the cherry and completely depends on skilful human labour. 
The coffee cherry harvesting represents around 40% of the 

production costs for Colombian coffee grower (Federación 
Nacional de Cafeteros - FNC, 2010).

The use of field-compatible approaches as the 
total soluble solids measured by the refractive index 
which correlates to the total soluble solids, quantitative 
measurement of colour, titratable acidity, and equatorial 
firmness are appealing approaches that might be closer to 
the growers’ requirements (Arcila et al., 2007; Silva et al., 
2014). These are variables that can increase or reduce with 
the cherry development; for example, the sugar content of 
the pulp increases with maturity and the pericarp softens 
(De Castro; Marraccini, 2006). One of the drawbacks 
of these techniques is that some of them are not batch 
compatible.

The dielectric spectroscopy technique at the radio-
frequency and microwave range has been of interest for quality 
assessment applications of multiple crops (Sosa-Morales et al., 
2010), it can process batches and simple samples, and it can 
be transferred to field compatible equipment. The complex 
permittivity of the samples is indicative of the molecular 
composition, and is represented by a complex number 
(Equation 1) that depends on the frequency and temperature 
(Franco et al., 2015).
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(1) Gray Level Co-occurrence Matrix (GLCM) and k-nearest 
neighbor (KNN), and support vector machine (SVM) among 
others, and it was possible the development of a classification 
model for maturity prediction with 100% of accuracy and 
0.0995 s training time. Classification of cherries regular 
and irregular shaped was developed (Momeny et al., 2020) 
employing HOG and LBP to extract the features of the images 
of cherries and KNN, ANN, Fuzzy and EDT algorithms to 
classify them. Results were compared with the Convolutional 
Neural Network (CNN) method, which was able to classify 
cherries with accuracy around 99% in all image sizes.

The aim of this study was to evaluate the physical 
features of coffee cherries that could operate as global maturity 
classifiers, regardless of the cultivar. Different physicochemical 
approaches compatible with the coffee cherry and the dielectric 
spectroscopy technique were used for this purpose. Machine 
learning was employed to the feature’s comparison and 
classification according to defined maturity stages: days after 
flowering and physical appearance of the cherries.

2 MATERIAL AND METHODS

2.1 Coffee samples
Four coffee cultivars were used for this study: two from 

northern Huila (NH1 / NH2), one from southern Huila (SH1), 
and one from Caldas (CA), all coffee producing regions in 
Colombia. All coffee cherries were collected during the 2018 
harvest, and their features are presented in Table 1.

Around 10 kg of fresh cherries collected at the plantations 
were stored at 8 °C and transported to the South Colombian 
Coffee Research Centre – CESURCAFE pilot plant during a 
period not superior to 6 – 8 h. Consequently, the sample set was 
constituted by 84 coffee cherry samples: 7 maturity stages, 4 
cultivars and 3 biological replicates. Stage 1 represents green 
unripe cherries, which appear 196 d after flowering (Marín et al., 
2004). Stage 2 corresponds to green-yellow cherries (i.e., 203 
d), Stages 3 and 4 to almost ripe or “pintón” cherries (i.e., 208-
215 d. Stages 5 and 6 represent ripe cherries (i.e., 217-224 d) 
while Stage 7 (i.e., after 224 d) represented overripe fruits. The 
difference between stages 3 and 4 were assessed according to 
physical appearance, as traditionally performed by growers. The 
same strategy was considered for stages 5 and 6. All cultivars 
considered were red varietals.

ˆ ' ''j   

The real part of ̂   is the relative electrical permittivity 
or dielectric constant (ε’), and the imaginary part of  is the 
dielectric loss factor (ε’’) with j = 1 . The electrical 
permittivity represents the ability of the material to polarize 
and to store electric energy in response to an applied electric 
field, and the loss factor is associated with the dissipation of 
energy as heat (Sosa-Morales et al., 2017).

As the maturity of many fruits and vegetables consists 
on the formation of sugars or the increase or loss of bounded 
and unbounded water, the dielectric spectroscopy approach 
has been used to assess the maturity of different fruits (Castro-
Giraldez et al., 2010; Guo et al., 2015). This method has been 
also considered to study the water features of green and roasted 
coffee (Berbert et al., 2008; Iaccheri et al., 2015).

Finally, the development of analytical based models has 
employed machine learning techniques for this purpose. As a 
considerable wavelength and frequency information is generated, 
the selection for critical features and qualitatively describe 
the reasons for this selection should be considered during the 
construction (Li et al., 2018). To allow efficient technological 
transfer, the meta-parameters considered for different machine 
learning methods have to be optimized and selected to produce 
the best model possible (Fashi; Naderloo; Javadikia, 2019). 
Furthermore, it is ideal not to rely on a single scheme but to 
explore as many techniques as possible as some techniques have 
better behavior than others for specific tasks (Yang et al., 2019). 
Finally, all these elements merge together in the construction of a 
pipelined structure where feature selection, dimension reduction, 
and meta-parameter optimization are combined to produce simple 
and accurate models (Piedad et al., 2018). This strategy can be 
combined to consider multiple factors or in this case processing 
stages that support growers’ in the complicated task of providing 
quality consistence (Rungpichayapichet et al., 2016).

Successfully results in maturity prediction of fruits 
using machine learning have been previously reported. For 
papaya (Santos Pereira et al., 2018), combined digital image 
features and random forest to develop a model to the ripening 
prediction. Combination of hand-crafted image features with 
machine learning techniques allowed to reach higher accuracy, 
improving the classification models for papaya. On the other 
hand, the work by (Behera; Rath; Sethy, 2020) employed local 
binary pattern (LBP), histogram of oriented gradients (HOG), 

Table 1: Coffee cultivars information: Northern Huila (NH1 / NH2), Southern Huila (SH1) and Caldas (CA).

Label Variety Municipality City Department Altitude [amsl] Average temperature
NH1 Colombia Rojo Las Juntas Santa María Huila 1750 21.6 °C
NH2 Colombia Rojo Los Pinos Santa María Huila 1630 22.5 °C
SH Castillo El Piñal Gigante Huila 1450 22.0 °C
CA Castillo Naranjal Canaan Viterbo Caldas 1300 29.0 °C
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2.2 Colorimetric and physical analysis
The colorimetric analysis was performed with a 

Konica Minolta CR-410 chroma-meter (New Jersey, USA) 
evaluating parameters as L*(lightness), a*(redness-greenness) 
and b*(yellowness-blueness). Analysis were performed in 
triplicate form, recording 9 measurements for each sample. 
Colour difference was estimated using Equation 2.

were performed before the tests to verify the calibration and 
stability of the equipment. 

Furthermore, after calibration, the probe and cable 
were not manipulated to avoid interferences. The 85070 
v.E06.01.36 software (Agilent Technologies, Malaysia) 
controlled the network analyser to perform the frequency 
sweep and measure the complex reflection coefficient of the 
sample around the probe tip, which was then converted to 
the complex permittivity. The measurements were performed 
from 0.5 to 20 GHz. For each measurement, 1001 points were 
acquired with an IF-bandwidth of 10 kHz.

A mass of 40 g of coffee cherries stored at 4 °C for 
no longer than 1-2 weeks was mashed with a ceramic mortar 
until a homogenous paste was obtained. The coffee cherries 
paste was poured into a beaker and carefully placed on and 
around the probe tip, to avoid air bubbles around the sensing 
zone. All measurements were performed at 20 ºC and a relative 
humidity of 65%. 

After each measurement, the probe was cleaned with 
distilled water and dried with soft paper. All the dielectric 
properties determinations were carried out in independent 
triplicates. Average values and standard deviations were 
calculated. 

2.4 Data analysis
The first part of the study consisted in the evaluation 

of the seven maturity stages. Accordingly, a random effect 
multilevel model was considered. Maturity was considered 
as the fixed effect, and the variety was considered as the 
random effect (random intercept and slope). Then, Tukey 
pairwise comparisons were performed to identify the 
groups that differentiated the stages. For the dielectric 
spectroscopy response, the analysis was split in two 
parts. The first portion consisted in the identification of 
the most critical features. For this purpose, the technique 
of extremely randomized trees was used, in tandem with 
recursive variable elimination. In the first run, five-fold 
cross validation was performed to determine the number of 
trees that resulted in the highest maturity stage classification 
accuracy. Then, thirty random seeds were generated, and 
the process of recursive feature elimination performed for 
each seed. Interactions across some of the frequencies were 
also considered.

The remaining features were scaled and analysed with 
principal component analysis (PCA), because of the high 
collinearity across frequencies, and the first 50 components 
were obtained. The traditional SVD decomposition was used 
for this purpose, and the biplot of the scores and loadings 
presented.

The third stage consisted in the development of the 
classification models. In the case of the physicochemical 
attributes, each technique was individually considered. 

(2)     2 2 2* * *E L a b      

All physical analyses were performed in triplicate. 
Total soluble solids as percentage were determined by an 
Atago PR 201 portable digital refractometer (Tokyo, Japan) 
and are presented as °Brix. Total soluble solids for Stages 1 
and 2 could not be obtained as mucilage could not be extracted. 
The moisture content for the samples was calculated according 
to the wet basis gravimetrical method based on the ISO 6673 
standard (Adnan et al., 2017). Empty aluminium tins to contain 
the samples were weighed with a 4-digit precision scale (i.e., 
WT). Then, a 5 g coffee cherry sample was deposited into 
the tin to obtain the wet weight (i.e., WW+WT). These full 
tins were heated inside a Memmert 55 oven (Schwabach, 
Germany) set at 105 °C, and the samples were dried for 24 
h. After removing the samples from the oven, the tins were 
weighed again to obtain the dry weight (i.e., DW+WT). The 
moisture content of each sample was computed according to 
Equation 3 (Adnan et al., 2017). 

     
 

 % 100
WW WT DW WT

MC
DW WT WT
  

 
 

(3)

The traditional weight over volume method was used 
to calculate the bulk density. The samples were deposited in a 
beaker. The volume that the samples occupied was measured, 
and the weight of the samples was recorded. The bulk density 
was calculated as the division of the weight of the coffee 
cherries by their volume.

The hardness measurements were completed with 
a Brookfield CT3 texture analyser (Pennsylvania, USA) 
equipped with a 50 kg load cell and a TA25/1000 cylindrical 
plane plunger. The plunger was set to advance at a velocity of 
0.8 mm•s-1 until the pulp failed.

2.3 Dielectric spectroscopy characterization
The dielectric spectroscopy characterization 

was carried out using a Keysight 85070E open circuit 
coaxial probe (Santa Rosa, USA). Before performing the 
measurements, the vector network analyser was warmed 
up for at least 90 min and subsequently calibrated using the 
standard given by the equipment: air – open circuit, short 
block and load - distilled water. Three to four measurements 
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Three types of classification techniques were considered: 
random forests, support vector machine (SVM) and k 
nearest neighbours (k-NN). The data was partitioned into 
two sets: 56 samples for training and 28 for validation, 
stratifying the observations by the interaction between 
maturity and variety. This partition was randomly 
performed 30 times, using the seeds previously computed, 
to obtain the statistics of the classification accuracy and 
confusion matrix results. This recalls the bootstrapping 
technique.

The hyper-parameters for each of the techniques 
were obtained by five-fold cross validation. The parameters 
to be calculated for each method were: number of trees for 
random forests, the sparsity regularization parameter and 
kernel function for SVM, and the number of neighbours 
used for k-NN. Then, each resulting model was evaluated 
with the validation set, and the classification accuracy and 
confusion matrix recorded. The latter were then averaged, 
and these correspond to the reported values. 

In the case of the dielectric spectroscopy technique, 
an additional layer was considered in the pipelined 
classifier: the PCA components as exogenous variables. 
Cross validation was also considered to select the optimal 
number of components for each technique. Once selected, 
the process is identical to the approach used for the 
physicochemical features. As the dielectric spectroscopy 
response generates three different features (i.e., dielectric 
permittivity, loss factor and loss tangent), the feature 
with the best accuracy was selected. Multi-level random 
effects models were calculated with the lm4 and lsmeans R 
packages version 3.3.6. The machine learning models were 
implemented with the scikit-learn package in Anaconda 
with Python 3.7.

3 RESULTS AND DISCUSSION

3.1 Colorimetric response
As the results for L* (lightness) and b*(yellowness-

blueness) are colinear, the plot between a* and b* are presented 
in Figure 1.

This plot presents an adequate distribution for each 
maturity stage as all varieties were red, and the only sample 
set that presented undesirable behaviour is the NH2- Stage 
2 set, which recalls the NH2-Stage 3 set. Yet, having four 
varieties accounts for possible variations across samples and 
the biological samples present the consistency required. The 
dominating parameter for this experiment was a*. Although the 
presence of yellow during stages 2 to 4 dominated the variation 
on b* (yellowness-blueness), which slightly changed with the 
proportion of yellow in the cherries. The parameter a*(redness-
greenness) changed from green to red with the progress of 
maturity. The lightness L* depicted a monotonically response, 
decreasing with the ripening process (Velásquez et al., 2019).

3.2 Physical analyses: the effects of maturity
The results for the features considered are presented in 

Table 2. As can be seen, all features were distributed between 
three to five groups.  The moisture content and bulk density 
values agree with those reported in the literature (Aristizábal-
Torres et al., 2012; Farah, 2012). 

The hardness and TSS values variations are related to 
the natural ripening process of fruits, which resulted in fruit 
softening and increase of sugar content other compounds 
water-soluble (Bashir; Abu-Goukh, 2003). Identical behaviour 
for hardness and TSS was previously reported as well (Marín-
López et al., 2003). Due to the spread response of the original 

Figure 1: Colorimetric study: b* vs. a*, grouping of maturity stages for Northern Huila (NH1 / NH2), Southern Huila (SH1) and 
Caldas (CA) samples.
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values, a natural logarithm transformation was performed on 
the data for modelling. This feature and the total soluble solids 
(TSS) were distributed in five groups. 

In the case of the moisture content, stage 1 presented a 
value close to 70.5% and decreased in stages 2 and 3. Then, 
the moisture reached a maximum at stage 5 which corresponds 
with stage 6 to the ripe stages. Finally, it decreased at stage 
7 due to pericarp absorption. Similar results were previously 
reported (Marín-López et al., 2003) for coffee fruits var. 
Colombia red, presenting the highest moisture content at stage 
5 and then diminishing until stage 7.

In the case of bulk density, the higher bulk density 
values were seen for fully and green-yellow immature stages, 
and the lowest for mature stages. As can be seen in Table 2, 

this parameter increased with moisture content. This behaviour 
was previously reported (Chandrasekar; Viswanathan, 1999) 
coffee beans arabica and robusta varieties. 

3.2.1 Permittivity and maturity
Figure 2 presents the dielectric permittivity response 

for all maturity stages and the frequency range between 0.5 
GHz and 20 GHz. The x-axis, which represents the frequency, 
is in logarithmic scale.

The response varies from 60 down to 20 for the complete 
frequency range. The relative dielectric permittivity presented 
no statistical difference across the maturity stages. The lowest 
dielectric permittivity was seen for stage 7. Figure 3 presents the 
loss factor response.

Table 2: Mean values and standard errors for each considered technique. Superscripts represent categories across the calculated 
values and P-val represents the p-value of the analysis of variance for each model.

Stage Moisture 
content (%)

Bulk Density 
[kg•m-3] L* a* b* ΔE TSS (°Brix) Hardness [N]

Min 62.5 0.454 17.1 -12.3 2.7 19.4 4.9 3.1
1 70.4 ± 0.4ab  0.527 ± 0.006b 34.8 ± 4.2cd -9.6 ± 1.0a 16.4 ± 2.8cd 39.7 ± 5.1cd - 86.3 ± 6.3f

2 68.1 ± 1.1a 0.522 ± 0.010ab 36.9 ± 6.0d -1.6 ± 3.9ab 17.1 ± 3.4d 41.2 ± 6.9d - 46.8 ± 8.9ef

3 69.9 ± 1.1b 0.501 ± 0.012ab 33.0 ± 3.5cd 7.0 ± 2.7bc 14.1 ± 2.4cd 36.8 ± 4.2bd 8.0 ± 0.9a 32.6 ± 9.2cdf

4 71.8± 0.8b 0.496 ± 0.008ab 27.8 ± 4.3bd 11.1 ± 2.1cd 10.7 ± 3.2bcd 32.0 ± 5.0cd 10.4 ± 0.4b 20.3 ± 7.3bc

5 74.0 ± 0.6c 0.494 ± 0.010ab 25.5 ± 7.0abc 14.3 ± 1.0de 8.8 ± 4.8ac 30.7 ± 8.4abc 12.1 ± 0.4c 14.6 ± 7.1abc

6 70.7 ± 0.7ab 0.493 ± 0.010ab 24.2 ± 3.5b 17.9 ± 2.4e 8.1 ± 2.2ab 31.3 ± 4.1ac 14.4 ± 0.7d 10.0 ± 6.5ab

7 67.3 ± 1.6ab 0.491 ± 0.010a 18.6 ± 4.2a 13.8 ± 1.3ce 4.3 ± 3.0a 23.3 ± 5.0a 15.4 ± 0.9d 5.9 ± 6.4a

Max 76.1 0.544 49.5 24.9 25.9 56.6 18.0 114.6
P-val 0.002569 0.01727 0.0007161 1.985 x 10-5 0.001134 0.002484 4.127 x 10-3 5.57 x 10-6

Figure 2: Dielectric permittivity response between 0.5 GHz and 20 GHz for coffee samples at each maturity stage. Solid lines 
represent mean values at each stage, and shadowed regions represent the standard errors.
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Opposed to the dielectric permittivity, the loss factor 
presented a difference across maturity stages, especially for 
stage 1 (green unripe). A second group was seen for stages 2 
to 4, and a third for stages 5 to 7. The frequency regions where 
this difference was more evident was between 0.5 MHz and 2 
GHz, that corresponds to the ionic conduction region (Keysight 
Technologies, 2015). The relaxation frequency, which was 
close to 15 GHz for all stages, presented no difference across 
stages. The dipolar rotation region, which is mainly dominated 

by the presence of water, is not the predominating phenomena 
in the discrimination of the maturity stage. The response is 
typical of a salt-mineral solution (Franco et al., 2015), which 
might be indicative that the maturity in coffee responds to the 
mineral content of the pulp rather than to its water content 
(Farah, 2012).

Finally, the loss tangent is presented in Figure 4. As 
with the loss factor, the main separation across maturity stages 
was perceived between 0.5 and 2 GHz.

Figure 3: Loss factor response between 0.5 GHz and 20 GHz for coffee samples at each maturity stage. Solid lines represent 
mean values at each stage, and shadowed regions represent the standard errors.

Figure 4: Loss tangent response between 0.5 GHz and 20 GHz for coffee samples at each maturity stage. Solid lines represent 
mean values at each stage, and shadowed regions represent the standard errors.
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Figure 5: PCA bi-plot for the loss tangent response and the recursive selection features: scores and loadings plot for Northern 
Huila (NH1 / NH2), Southern Huila (SH1) and Caldas (CA) samples.

3.3 Feature selection and principal component 
analysis (PCA)

The first cross validation showed that the optimal number 
of design trees was 300. After randomly running the recursive 
elimination scheme, 42 out of the 1001 frequencies were included 
in all models for maturity classification: frequencies between 
0.5 GHz to 1.3 GHz. When running the PCA algorithm with 
these 42 frequencies, 948.5 MHz was the highest PC1 loading 
frequency. This first component represented almost 98% of the 
variability of the data. After analysing the remaining frequency 
ranges: 2 – 10 GHz and 10 GHz to 20 GHz, the highest ranked 
in these ranges were frequencies between 2 to 3 GHz and those 
superior to 19 GHz. The interactions between these ranges 
and 948.5 MHz were included in the final model. A total of 62 
features were used for the final principal component analysis. 
The bi-plot, which presents both the scores and loadings plot is 
presented in Figure 5.

The first component represents 97% of the variance 
while the second represents 1.6%. The high variance 
represented in component 1 shows that the high collinearity 
between frequencies. Yet, the discrimination capacity of the 
technique to classify the maturity stages is good although 
only 6% of the features are retained. The interactions 
mostly contributed in the direction of component 2. The first 
component was related to the maturity stage, while the second 
component presented a slight discrimination across varietals. 

The highest dispersion was perceived for stage 1 and 
stage 2, as with the colorimetric analysis. Positive values 

of the first component are indicative of green underripe to 
almost ripe cherries, while negative values indicate ripe to 
overripe cherries. Samples below 0 for this component are 
related to good quality attributes (Puerta-Quintero, 2000). 

Figure 6 presents the loss tangent values at 948.5 
MHz and the groups according to the random effects 
model. The maturity stages were separated in five different 
groups at this frequency, with the lowest values for stages 
5 to 7 and the higher values for stages 1 to 4, being stage 
1 the stage with the highest value. Consequently, Figures 
3 to 6 depict the potential that the dielectric spectroscopy 
technique has for the classification of the maturity stage of 
coffee cherries.

3.4 Classification models
According to the pipeline structure presented in section 

2.6, Table 3 presents the general results for the techniques used 
and all the dielectric properties.

The best classification results for the dielectric 
spectroscopy technique were obtained for the SVM (support 
vector machine) model, that used the first five components 
of the PCA analysis and used the radial basis kernel with 
regularization parameter equivalent to 10. Random Forest 
models present overfitting of the validation sets, and 
k-NN presented intermediate performance. Consequently, 
the SVM models were considered and the dielectric 
spectroscopy response was represented by the loss tangent. 
Table 4 presents the accuracy obtained for each of the 
measurements.
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Figure 6: Loss tangent at 948.5 MHz for each maturity stage. Bars represents mean value and error bars represent standard error 
(p-value: 0.0144. 

Table 3: Method and dielectric feature comparison: tree number for Random Forest, regularization parameter (Reg. P) for support 
vector machine (SVM) and neighbor number for k nearest neighbours (k-NN).

Random Forest SVM k-NN
PCA Tree N. PCA. Reg. P PCA. Neigh.

3 175 5 10 1 4

tan δ
Train 100% 90.7% 95.0%
Test 50.7% 56.8% 54.7%

PCA Tree N. PCA. Reg. P PCA. Neigh.
2 200 4 1000 1 4

ε’
Train 100% 89.8% 87.0%
Test 41.9% 45.1% 41.0%

PCA Tree N. PCA. Reg. P PCA. Neigh.
150 5 2 1000 4 2

ε’’
Train 100% 48.8% 54.0%
Test 21.8% 20.0% 17.3%

Table 4: Accuracy for the classification of the seven maturity stages: dielectric spectroscopy (tan d), colorimetric analysis 
(CIEL*a*b*), moisture content (MC), total soluble solids (TSS) and hardness

Technique tan d CIEL*a*b* MC TSS Hardness
Accuracy [%] 56.8 75.1 45.5 48.9 72.5

The highest ranked techniques were the hardness 
and colorimetric response. For the latter, the result is valid 
while analysed cultivars are red at ripeness. Yellow, orange 
or pink varieties might result in a lower global classification 
accuracy. These two techniques are followed by the loss 
tangent, which presents an accuracy close to 60 %: The 

lowest ranked techniques are the total soluble content and 
the moisture content. However, the normalized confusion 
matrix is more indicative of the real accuracy at each stage. 
Figure 7 presents these results, were the columns represent 
the actual stage, and the rows represent the stage predicted 
by the model. 
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The desired response for an ideal model is an identity 
matrix. False positives are represented in values outside the 
diagonal of the rows. In the case of the dielectric spectroscopy, 
the highest true positive values were seen for stages 1, 5 and 
6. In particular, the model for stage 1 did not present false 
positives from stages 5, 6, and 7. Hence, no underripe cherries 
will be considered as ripe. Stages 2 and 3 present a performance 
decrease compared to stage 1. The lowest performance 
samples corresponded to stages 4 and 5. In general, stage 4 is 
confused with stages 2,3 and 5. In the case of stage 5, samples 
are mostly confused with stages 4, 5 and 2. It is important to 
recall that this is independent of the cultivar. 

In the case of colour, some of the stage 5 samples were 
classified as stage 1. The best accuracy was achieved for stage 
4. Stage 5 was misclassified at every stage, mostly for stages 
4 and 5. Colour is definitely an important variable for maturity 
assessment, but is important to consider other alternatives 
(Arcila et al., 2007).

The moisture content is the technique that presented 
the weakest performance. Yet, the stage that had the best 
performance was stage 5. Hence, the separation of stage 5 could 
be achieved by threshold verification. Nevertheless, performing 
moisture content measurements in the field is not an easy task. 

The lack of measurements in stages 1 and 2 might 
affect the accuracy of the total soluble solid model. The 
remaining stages present adequate classification values for 
stages 3, 5 and 6. Stages 6 and 7 present similar performances 
and are eventually confused. Finally, the hardness presents the 
best performance. All stages are misclassified with at most 2 
of their neighbour stages. Stages 1 and 7 presented the best 
performance.

4 CONCLUSIONS

Global maturity classifiers for coffee cherries were 
proposed. The validity of the sample collection was verified 
with the colorimetric analysis, which presented the highest 
variance for stages 1 and 2 and a reduction of the variance as 
the maturity advances. Cultivars with other colours should be 
considered to evaluate the consistency of the technique.

The physicochemical features associated to the maturity 
stages agree with previously reported results. Three groups 
were obtained for all considered technologies due to the most 
attributes presented a monotonic response. Even though the 
moisture content presented a maximum at stage 5, threshold 
strategies could be verified for this approach.

The dielectric spectroscopy technique presents an 
important potential for this application. Although the dielectric 
permittivity did not present a difference across the maturity 
stages, the loss factor and loss tangent did. The difference 
was mainly evidenced at the ionic conduction region. The loss 
tangent should be employed as dielectric spectroscopy marker 
at frequencies from 300 MHz to 1.3 GHz. The higher frequency 
interactions contributed to the separation across the second PCA 
component, which was mostly related to the cultivar, than to 
the first that responded to the maturity stage. This technique 
has potential for performing singular and mass (i.e., group of 
cherries) measurements. Furthermore, this could be transferred 
to simpler devices that can be carried to the field for cherry 
sorting considering that planar technologies (i.e., antennas and 
filters) and current software defined platforms operate well 
at the selected frequencies. This could be further extended to 
implement RF imaging equipment for online automatic sorting.

Figure 7: Normalized confusion matrices for the dielectric spectroscopy (tan d), colorimetric analysis, moisture content (MC), total 
soluble solids (TSS) and hardness classification models.
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From the three machine learning techniques, the best 
results were obtained for SVM. The training and test accuracy 
sets agreed well for this technique. As seen in the confusion 
matrices, the dielectric spectroscopy approach performed well 
for stages 1, 6 and 7, and reduced performance for stages 3 and 
5. According to this, the technique could be used to predict the 
moisture content. 

Although techniques such as the colorimetric analysis 
and hardness presented reliable performance, the analysis 
must be performed on a unique cherry basis or require high 
accuracy that cannot be easily transferred to portable field 
compatible technology.
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